А. Н. ТИМАШКОВ, Н. В. ШАТОВА, Н. Г. БЕРЕЖНАЯ, Ю. С. БАЛАШОВА (ВСЕГЕИ), А. Б. МОРОЗОВА (СПбГУ), П. А. ЛЬВОВ, С. П. ШОКАЛЬСКИЙ, А. О. ПЛЕХАНОВ, А. В. МОЛЧАНОВ, А. В. РАДЬКОВ (ВСЕГЕИ)

ГЕОХРОНОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ ГРАНИТОИДОВ СТАНОВОЙ СКЛАДЧАТОЙ ОБЛАСТИ

Геохронологические исследования гранитоидов мезозойского возраста, проведенные в центральной части Становой складчатой области, позволили уточнить Алдано-Забайкальскую (1000) серийную легенду с помощью локальных изотопных методов датирования цирконов. Некоторые крупные массивы, ранее выделявшиеся как позднеархейские или раннепротерозойские, оказались мезозойскими с возрастом от 138 ± 2 до 143,9 ± 3,6 млн лет, что соответствует раннему мелу.

Ключевые слова: граниты, цирконы, щит, возраст, изохрона, массив, комплекс.

Geochronological studies of the Mesozoic granitoids conducted in the central part of the Stanovoi fold area enabled to specify the Aldan-Transbaikalia (1,000) serial legend using local isotope techniques of zircon dating. Some large massifs previously distinguished as the Late or Early Proterozoic appeared to be Mesozoic aged from 138 ± 2 to 143.9 ± 3.6 Ma, which corresponds to the Early Cretaceous. Keywords: granites, zircons, shield, age, isochron, massif, complex.

В процессе создания комплектов Госгеолкарт 1000 (лист O-51 «Алдан», O-51 «Бодайбо», N-51 «Сковородино») в связи с публикациями, появившимися в последнее десятилетие по территории южной части Алдано-Станового щита, встал вопрос о возрастном положении гранитоидов Становой складчатой области, требующий геохронологического изучения этого региона современными методами.

При геохронологических исследованиях гранитоидов в ЦИИ ВСЕГЕИ использовалась наиболее надежная методика по акцессорным цирконам U-Pb методом с применением вторично-ионного масс-спектрометра (SIMS) SHRIMP II для локального изотопного анализа в гомогенных доменах индивидуальных зерен цирконов в пятне размером 20 × 2 мкм.

Как известно, Становая складчатая область является северо-восточной частью Байкальской рифтовой зоны, протянувшейся в субширотном направлении от Тункинской впадины на юге к району сочленения Алданского и Станового мегаблоков. На всем протяжении Байкальской рифтовой зоны широко развиты различные магматические образования, свидетельствующие о ее бурной геологической истории, продолжающейся и в наше время (рис. 1).

В рассматриваемом регионе (рис. 2), расположенном южнее крутопадающего Станового разлома, известны крупные батолитоподобные плутоны и пологозалегающие интрузии гранитоидов, прорывающие глубокометаморфизованные образования нижнего и верхнего архея, а также древние докембрийские магматические образования кислого и основного состава различных комплексов.

Работы велись нами в бассейнах крупных рек Нюкжа, Тимптон, Гилюй и на их притоках Чильчи,

Геткан, Манахта 1-я, Тында и др. на коренных выходах и обнажениях, связанных со строительством Байкало-Амурской железнодорожной магистрали.

Основное значение, судя по площади массивов, имеют батолитоподобные интрузии гранитоидов, возраст которых от позднего архея [4, 5] – раннего протерозоя [6] до юры – мела [1, 2].

В восточном сегменте рассматриваемой территории известны крупные массивы (Чубачинский, Гетканский, Неричинский, Амунакитский и др.) гранитоидов, возраст которых весьма спорный.

Типичными представителями этих гранитоидов являются Чубачинский и Гетканский массивы, расположенные в верховьях р. Средняя Ларба и по левому и правому водоразделам р. Геткан. Их внутреннее строение неоднородно. Центральные части гомогенные, иногда представлены порфировидными гранитами, к периферии плутонов появляются лейкократовые разновидности, грубые мигматиты, гнейсовидные граниты, гранодиориты и граносиениты. По составу гранитоиды массивов микроклинплагиоклазовые биотитовые, редко с роговой обманкой. Они прорывают соскладчатые гранитоиды древнестанового комплекса и содержат ксенолиты глубокометаморфизованных пород архея.

Относительно их возраста необходимо сказать следующее. Так, в 60–70-е годы прошлого века они считались раннепротерозойскими и выделялись как позднестановой комплекс, в 90-е годы после получения Е. П. Миронюком (1996) результатов U-Pb датирования по фракциям цирконов (2505 ± 20 млн лет, Гетканский массив) с применением масс-спектрометров МИ-1201Т, МАТ-261 и МИ-1320 эти гранитоиды стали считать позднеар-хейскими и их выделили в петротипе как кувыктинский комплекс, что нашло отражение на Госгеолкарте (лист О-(50)51 «Алдан», 1999). В 2000-х годах

Региональная геология и металлогения, № 61, 2015

[©] А. Н. Тимашков, Н. В. Шатова, Н. Г. Бережная, Ю. С. Балашова, А. Б. Морозова, П. А. Львов, С. П. Шокальский, А. О. Плеханов, А. В. Молчанов, А. В. Радьков, 2015

Рис. 1. Проявления сейсмичности на юге Сибири и Дальнего Востока (В. С. Имаев и др., 2003) Землетрясения (М): 1 – 5,8–7,6; 2 – 4,7–5,7; 3 – 4,0–4,6; 4 – < 4/0. *I–II* – Байкало-Становой сейсмический пояс (I – Байкальская рифтовая зона, II – Олекмо-Становая сейсмическая зона); III – Тукурингра-Джагдинская сейсмическая зона

Рис. 3. Образцы гранитоидов различных комплексов, проанализированные в ходе геохронологических исследований Становой складчатой области

1 – 998А. Гранит биотитовый порфировидный (тукурингрский комплекс); 2 – 1361/1. Кварцевый диорит порфировидный (тындинско-бакаранский); 3 – 17/6. Монцодиорит (ларбинский); 4 – ТМ-8/3. Гранит биотитовый (тукурингрский); 5 – 1411/1. Кварцевый диорит (тындинско-бакаранский); 6 – 17/17. Кварцевый монцодиорит порфировидный (ларбинский); 7 – ТМ-9/1. Гранит биотитовый гнейсовидный (тукурингрский); 8 – 1388/4. Кварцевый монцонит-порфир (тындинско-бакаранский); 9 – 17/14. Гранит-порфир (аинглинский)

А. М. Лариным и др. проводились исследования в центральной части Чубачинского массива, полученный возраст гранитоидов 138 ± 4,8 млн лет (U-Pb метод по цирконам) послужил одним из оснований для сопоставления гранитов Чубачинского массива с гранитоидами тукурингрского комплекса [1]. На Госгеолкарте-1000 (лист N-51 «Сковородино», 2009 г.) гранитоиды, выделенные авторами листа как тукурингрский комплекс, имеют раннепротерозойский возраст [6], что, по нашему мнению, ошибочно и связано с неправильной интерпретацией результатов датировок на SHRIMP II.

Для уточнения возраста гранитов, ранее считавшихся позднеархейскими или раннепротерозойскими, слагающих петротипический Гетканский массив, из них взята пр. 998А (рис. 3) весом 0,5 кг (координаты 124°13 00 з.д., 55°11 00 с.ш.).

Граниты лейкократовые светлые розовато-белые крупнозернистые порфировидные биотитовые. Они состоят из кварца 25–30, плагиоклаза (олигоклаза) 20, ортоклаза, микроклина 40, биотита 5, мусковита 1; вторичные – хлорит развивается по биотиту, эпидот и серицит по полевым шпатам, не более 1; акцессорные – сфен, циркон; рудные – магнетит. Структура порфировая, текстура массивная. Граниты относятся к натриевой, умереннощелочной, низкокальциевой, высокоглиноземистой петрохимической группе (рис. 12). Редкоземельные спектры гранитов, нормированные по хондриту С₁, характеризуются увеличением содержания легких

Рис. 2. Геологическая схема зоны сочленения Становой складчатой области и Алданского щита масштаба 1:1 000 000

1 – раннемеловые вулканогенные и вулканогенно-осадочные образования; 2 – аинглинский комплекс. Граниты, гранитпорфиры; 3 – ларбинский комплекс. Монцодиориты, граносиениты, сиеногранодиориты порфировидные; 4 – тындинскобакаранский комплекс. Граниты, иногда порфировидные; 5 – тукурингрский комплекс (позднестановой). Граниты, иногда порфировидные; 6 – верхнехолодниканский комплекс. Мелкие тела ультраосновных пород, гарцбургиты; 7 – юрские осадочные отложения; 8 – ингамакитский комплекс. Гнейсограниты биотитовые; 9 – нерасчлененные образования ультраосновных пород; 10 – бестяхский комплекс. Гнейсовидные плагиограниты, граниты, тоналиты; 11 – нерасчлененные граниты; 12 – древнестановой комплекс. Плагиограниты биотитовые, биотит-амфиболовые, лейкограниты и мигматиты; 13 – унгкурхейский комплекс. Метагаббро-нориты; 14 – Южно-Алданский надвиг; 15 – Становой глубинный разлом и тектонические нарушения более низкого порядка; 16 – места отбора проб для геохронологических исследований; 17 – стратифицированные архейские глубокометаморфизованные образования фундамента

Рис. 4. Диаграммы с конкордией для цирконов из гранитов биотитовых порфировидных тукурингрского комплекса, пр. 998А (общий вид и фрагмент)

элементов над тяжелыми La/Yb)n = 8,9 и присутствием положительной европиевой аномалии (Eu/ Eu = 0,013). По характеру распределения REE напрашивается вывод об обогащении гранитов (пр. 998А) легкими редкими землями и обеднении тяжелыми, а также о том, что в такой среде увеличивалось количество плагиоклаза (рис. 11).

Из пр. 998А выделено 40 зерен циркона (рис. 14). По результатам U-Pb датирования цирконов получен конкордантный возраст 138 ± 2 млн лет (рис. 4, табл. 1), что соответствует раннему мелу и идеально совпадает с результатом А. М. Ларина [1], полученным им по цирконам из сходных биотитовых гранитов (пр. 5667) Чубачинского массива.

Помимо Гетканского массива нами исследовались гранитоиды восточной части Чубачинского массива, обнажающиеся в верховьях р. Тимптон, выделенные Е. П. Миронюком (1999) в составе докембрийских кувыктинского, амутканского [3] и Д. В. Угробиным (2001) неричинского комплексов позднеархейского возраста [6, 7].

В верховье р. Манахта 1-я, являющейся левым притоком р.Тимптон в сплошном коренном выходе (координаты 124°49 00 з.д., 56°01 00 с.ш.), обнажаются лейкократовые биотитовые крупноравно-

Рис. 5. Диаграммы с конкордией для цирконов из гранитов биотитовых тукурингрского комплекса, пр. ТМ-8/3 (общий вид и фрагмент)

мернозернистые светлые розовато-серые (рис. 3, пр. ТМ-8/3) граниты. Они состоят из кварца 25–30, плагиоклаза (олигоклаз-альбит) 30, ортоклаза, микроклина 30, биотита 8–10; вторичные минералы – хлорит, развивается по биотиту, серицит по плагиоклазу, всего 1; акцессорные – сфен, циркон. Текстура слаботрахитовая, структура порфировидная. Из пр. ТМ-8/3 весом 0,8 кг выделено 51 зерно циркона (рис. 14). По результатам U-Pb датирования цирконов получен конкордантный возраст 143,9 \pm 3,6 млн лет, что соответствует раннему мелу (рис. 5, табл. 1).

К востоку от р. Манахта 1-я в нижнем течении р. Манахта 2-я, также являющейся левым притоком р. Тимптон, широко развиты сходные по составу гранитоиды, отнесенные Е. П. Миронюком в 1996 г. к амутканскому комплексу позднего архея [4, 5] на основании результатов U-Pb датирования по четырем фракциям цирконов с построением изохронной диаграммы (2410 млн лет, дискордантный). Эти граниты образуют небольшие массивы, вытянутые в субширотном восточном направлении. Строение и состав их однородны, как правило, в периферийной части они гнейсовидные, в центральной массивные. Жильная серия представлена

Таблица 1

Пробы и точ- ки измерения	²⁰⁶ Pb _c , %	U, T/T	Th, r/T	232Th / ²³⁸ U	²⁰⁶ Pb*, 1/T	Bo3p; ²⁰⁶ Pb/ ²	acT 38U	Bo3pa(²⁰⁷ Pb/ ²⁰⁶	cT SPb	²³⁸ U/ ²⁰⁶ Pb*	*	²⁰⁷ Pb* / ²⁰⁶ Pb*	*	²⁰⁷ Pb* / ²³⁵ U	*	²⁰⁶ Pb* / ²³⁸ U	*	К, отн. ед.
998A.1.6.2	0,73	617	446	0,75	11,20	134	$\pm 1,3$			47,53	0,95	0,0452	7,8	0,131	7,8	0,02104	0,95	0,121
998A.1.5.1	0,74	442	235	0,55	8,15	136	$\pm 1,5$			46,96	1,1	0,0471	8,9	0,138	6	0,02129	1,1	0,121
998A.1.4.2	1,06	219	80	0,38	4,07	137	$\pm 2,5$			46,61	1,9	0,0477	12	0,141	12	0,02145	1,9	0,151
998A.1.2.1	1,52	269	128	0,49	5,04	137	$\pm 2,3$			46,5	1,7	0,0418	18	0,124	18	0,0215	1,7	0,094
998A.1.3.3	0,00	119	9	0,05	2,2	138	$\pm 1,8$			46,34	1,3	0,0495	5,4	0,1474	5,6	0,02158	1,3	0,24
998A.1.3.2	5,64	39	3	0,07	0,766	139	$\pm 6,2$			46	4,5	0,074	38	0,221	39	0,02172	4,5	0,117
998A.1.1.3	0,00	206	34	0,17	3,97	143	$\pm 2,1$			44,53	1,5	0,0501	4,6	0,1552	4,9	0,02246	1,5	0,311
998A.1.1.2	1,29	174	89	0,53	3,51	148	$\pm 2,7$			43,2	1,8	0,0438	16	0,14	16	0,02314	1, 8	0,115
998A.1.1.1	0,00	210	119	0,59	68,89	2081	+ 13	2313	± 17	2,624	0,76	0,1471	0,96	7,731	1,2	0,3811	0,76	0,619
998A.1.3.1	0,00	186	107	0,59	76,8	2528	± 26	2738	± 15	2,083	1,2	0,1895	0,88	12,55	1,5	0,4802	1,2	0,811
998A.1.6.1	0,00	232	74	0,33	104	2701	± 18	2681	± 12	1,922	0,81	0,1831	0,74	13,14	1,1	0,5204	0,81	0,739
998A.1.4.1	0,09	69	45	0,67	33,2	2857	± 29	2850	± 30	1,792	1,3	0,2029	1,9	15,6	2,2	0,5577	1,3	0,563
TM-8/3.1.1	1,08	74	19	0,27	1,37	136,3	± 7,4	-191	± 550	46,3	5,4	0,0513	6,4	0,126	23	0,0214	5,5	0,243
TM-8/3.3.3	0,00	216	30	0.14	4,02	138,1	± 4,4	78	± 80	46,2	3,3	0,0476	3,4	0,142	4,7	0,02165	3,3	0,695
TM-8/3.6.2	1,33	312	65	0,22	6,02	141.3	± 4,6	-270	± 410	44.5	3,2	0,052	3,3	0,126	16	0,02216	3,3	0,201
TM-8/3.2.2	1,61	49	2	0,04	0,965	144,7	± 5,3	54	± 430	43,3	3,6	0,0599	6,2	0,147	18	0,02271	3,7	0,202
TM-8/3.3.2	0,00	58	7	0,12	1,14	145,2	±5	376	± 140	43,9	3,5	0,0541	9	0,17	7	0,02277	3,5	0,501
TM-8/3.5.1	1,08	324	7	0,02	6,42	145,5	± 4,7	57	± 290	43,3	3,2	0,0558	3	0,148	13	0,02282	3,3	0,262
TM-8/3.3.1	0,84	93	14	0,16	1,86	147,4	\pm 4,9	-64	± 250	42,9	3,4	0,0516	4,8	0, 143	11	0,02313	3,4	0,309
TM-8/3.2.1	0,00	36	4	0,11	0,746	153,5	$\pm 5,6$	115	± 190	41,5	3,7	0,0483	7,9	0,161	8,7	0,0241	3,7	0,422
TM-8/3.6.1	0,05	155	96	0,64	62,3	2471	± 65	2640	± 9.5	2,14	3,2	0,17905	0,55	11,5	3,2	0,467	3,2	0,984
TM-8/3.4.1	0,01	61	5	0,09	26,5	2637	± 70	2660	± 23	1,979	3,3	0,1808	1,4	12,59	3,5	0,505	3,3	0,918
TM-9/1.1.1	0,30	488	113	0,24	8,9	135,1	± 4,3	100	± 110	47,1	3,2	0,0504	2,9	0,1402	5,8	0,02118	3,2	0,554
TM-9/1.1.2	0,00	914	18	0,02	272	1,92	± 52	2,265	+ 11	2,882	3,2	0,14308	0,66	6,84	3,2	0,347	3,2	0,979
TM-9/1.2.1	0,35	364	36	0,10	6,54	132,9	\pm 4,3	136	± 120	47,8	3,2	0,0515	3,6	0,14	9	0,02083	3,3	0,538
TM-9/1.3.1	0,58	792	308	0,40	15,9	147,8	± 4,7	158	± 120	42,9	3,2	0,0539	2,4	0,1574	5,9	0,0232	3,2	0,541
TM-9/1.4.1	0,75	591	113	0,20	89,5	1,039	± 31	2,578	± 28	5,67	3,2	0,1776	1,2	4,15	3,6	0,1749	3,2	0,886
TM-9/1.5.1	0,00	688	70	0,10	9,8	106	$\pm 3,7$	197	± 190	60,3	3,5	0,05	8,2	0,114	8,9	0,01658	3,5	0,389
TM-9/1.6.1	0,36	546	139	0,26	10,7	145,3	\pm 4,6	73	± 110	43,7	3,2	0,0504	2,5	0,1492	5,5	0,02279	3,2	0,582
TM-9/1.7.1	0,64	430	95	0,23	8,41	144,2	\pm 4,6	47	± 170	43,9	3,2	0,0521	2,8	0,146	7,8	0,02262	3,2	0,414
TM-9/1.8.1	0, 19	477	66	0,21	9,51	147,7	\pm 4,6	104	± 78	43,1	3,2	0,0496	2,7	0,1537	4,6	0,02318	3,2	0,693
TM-9/1.9.1	0,23	220	171	0,81	12,2	402	± 12	376	± 70	15,48	3,2	0,056	2,2	0,481	4,4	0,0644	3,2	0,718
TM-9/1.10.1	0,00	403	35	0,09	7,98	146,9	\pm 4,6	74	± 71	43,4	3,2	0,0475	3	0,151	4,4	0,02306	3,2	0,728
Примечани © 0,75%.	ı e. Norpeı	тиности д	цаны на у	уровне 1-s	igma. Pb _c и	Рb* показь	вают дол.	и обыкновенн	ого и ради	огенного сви.	нца. Ош	ибки в кали	бровке ст.	андарта 99.	8A - 0,4	48, TM-8/3 –	0,54 и ТІ	M-9/1 —
9																		

Результаты U-Pb анализа цирконов из гранитов тукурингрского комплекса

Рис. 6. Диаграммы с дискордиями и конкордией для цирконов из гранитов биотитовых тукурингрского комплекса, пр. ТМ 9/1 (общий вид и фрагмент)

аплитами и лейкократовыми пегматоидными гранитами с мелким гранатом. Граниты амутканского комплекса прорывают глубокометаморфизованные образования иликанской серии архея и их диафторированные разновидности, а также архейские метагабброиды кабактинского комплекса и древнестановые плагиограниты и лейкограниты.

Из петротипического массива гранитов амутканского комплекса взята пр. ТМ-9/1 весом 0,5 кг (координаты 125°02 00 з.д., 56°01 00 с.ш.). Это светло-серые, почти белые среднезернистые равномернозернистые граниты с характерным капельновидным кварцем (рис. 3, пр. ТМ-9/1). Граниты умереннощелочного натриевого типа с ультравысокой глиноземистостью (9–15), что свидетельствует о проявлении процессов метаморфизма (рис. 12).

Из пр. ТМ-9/1 гранитов выделено 36 зерен циркона (рис. 14). По результатам U-Pb датирования цирконов получен конкордантный возраст 142,3 \pm 3,4 млн лет, что соответствует раннему мелу (рис. 6, табл. 1). Помимо этого значения получены дискордантные возрасты ядер 2689 \pm 59 и 2279 \pm 24 млн лет. Сходные значения возраста получила Н. Н. Петрук [6] для Амунакитского массива (басс. р. Нюкжа) – 132 \pm 4 и 2365 млн

Рис. 7. Диаграммы с конкордией для цирконов из кварцевых диоритов порфировых (пр. 1361/1) и обычных (пр. 1411/1) тындинско-бакаранского комплекса

лет, но проинтерпретировала их неверно, посчитав дискордантное раннепротерозойское значение ядерной части зерен за время образования гранитоидов Амунакитского массива и тукурингрского комплекса, отнеся его к раннему протерозою, а не к раннему мелу.

По поводу Неричинского массива необходимо сказать, что он сходен по составу с гранитоидами амутканского комплекса, возраст которого раннемеловой (142,3 \pm 3,4 млн лет), а многочисленные радиологические данные предшественников (Pb-Pb метод ТИЭ по циркону и K-Ar метод) указывают на его мезозойский возраст 141–166 млн лет, что приближается ко времени образования Неричинского массива, полученному по цирконам с применением масс-спектрометра SHRIMP II.

Следующий магматический комплекс геохронологических исследований — тындинско-бакаранский. Его гранитоиды — крупные плитообразные массивы в юго-восточной части рассматриваемой территории Становой складчатой области в целом имеют северо-западную ориентировку. Они сложены диоритами, в основном кварцевыми монцонитами, гранодиоритами, гранитами, сиенитами, реже плагиогранитами и лейкогранитами.

Таблица 2

Пробы и точ- ки измерения	²⁰⁶ Pb _c , %	U, r/T	Th, ^{r/T}	²³² Th / ²³⁸ U	²⁰⁶ Pb*, r/T	Bo3p8 ²⁰⁶ Pb/ ²	acT ³⁸ U	Bo3I ²⁰⁷ Pb/	pacr 206Pb	²³⁸ U/ ²⁰⁶ Pb*	÷	²⁰⁷ Pb*/ ²⁰⁶ Pb*	÷	²⁰⁷ Pb*/ ²³⁵ U	∓ %	²⁰⁶ Pb*/ ²³⁸ U	÷	К, отн. ед
1361/1.1.1	0,02	424	70	0, 17	91,5	1446	±34	1876	± 12	3,98	2,6	0,11494	0,67	0,11477	0,69	0,2514	2,6	0,968
1361/1.1.2	0,75	423	254	0,62	7,01	122,2	+ - ,	-107	± 210	51,9	2,7	0,0501	ж, 4, 4	0,0441	8, ,	0,01913	, v x	0,313
1.2.1/1021	0,99	275	/07	0,81	с <i>с</i> ,с с г	6,611	+ - 2, c 4, 2	771	±280	7,72	v v v v	0,0205	4 0 4 0	0,0485	71	0,018/8	ر بر بر	0,230
1261/1.2.2	000	4/0	710	0,40	ر <i>ب</i>	4,071	+1 + v v 4, ∠	756	±110	51,1 51,1	7,' 7	0,0485	ν, ν ν, ν	90CU,U	4 م کر	0,01964	/, /	0,489
1.0.1/1001	0,00	100	740	0,09	0,02	122	⊢ - بر 4 ر	007	H ۲/	5,20	0, C	0100,0	4 c 7 r	0100,0	4 1, 1	0,01014	0, 0 0, 0	0,040
1.4.1/1001	0,20	470	050	1,30	,03	7,221	+ . , , ,	134	±130	22,1	7,7	/ 00,0	<i>с</i> , с	0,048/	c,c	0,01914	λ, 0 Γ	0,447
1361/1.4.2		532	325	0,63	9,15	127,8	+ 3,4	129	± 71	49,9	2,7	0,0486	m	0,0486	m	0,02003	2,7	0,669
1361/1.5.1	0,36	471	244	0,54	7,93	124,5	+ 3,4	81	± 120	51,1	2,7	0,0505	3,3	0,0476	4,9	0,0195	2,7	0,486
1361/1.6.1	0,65	434	264	0,63	6,95	118,1	\pm 3,4	98	±170	53,7	2,8	0,0532	3,4	0,048	7,4	0,0185	2,9	0,364
1361/1.7.1	0,31	612	362	0,61	9,93	120,2	$\pm 3,2$	216	± 130	52,9	2,7	0,0529	2,8	0,0505	5,7	0,01883	2,7	0,429
1361/1.8.1	0,46	529	299	0,58	9,07	126,8	$\pm 3,5$	92	± 200	50,1	2,7	0,0516	ŝ	0,0479	8,4	0,01987	2,8	0,313
1361/1.9.1	0,63	695	541	0,80	11,4	121,1	$\pm 3,3$	124	± 160	52,4	2,7	0,0535	2,8	0,0485	6,8	0,01897	2,7	0,373
1411/1.1.1		246	237	1.00	4.17	126.7	+ 3.8	398	±200	50.8	m	0.0476	6.2	0.15	9.6	0.01985	m m	0.315
1411/1 2 1	1 22	219	161	0.76	3 57	118.7) +	53	+340	53 4	۲ د د	0.0568	6 2	0 12	15	0 0185	, u	0 225
1411/1.3.1	2.09	113	49	0.45	1.88	121.2	+ 2 4 7 1	296	+470	51.6	3.2	0.0688	6,6 6.6	0.137	21	0.01898	2, C 2, C	0.164
1411/141	0.25	156	68	0,50	2,100	179	+ + + + + + + + + + + + + + + + + + + +	109	+190	40.3	j, c	0.0502	6.7	0.134	2 2 2	0,02072	, c , c	0 367
1411/151	0.94	190	901	0,20	3 27	1267	+ + - 4 - 7	44	+410	49.9	, ,	0.0544	, o 9 2	0.128	18.	0,02022	, c 1 4	0.193
1411/152	1 83	203	155	0.70	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	118.3	- + , 0	- 343	+720	22	, c , 1	0.0548	5,0	0,120	38	0,01853	,	0 119
1411/161	0.55	143	58 25	0,61	07,20 7 41	174.6	- + ,	316	+730	رت 17	۲, ۳	0.0571	t, v	0,102 0 142	11	0.01951	ی د 1	0 29
1411/171	<u></u>	160	107	0,69	2 2 2 2	121 5	+ + 2, 6 2, 7	465	002+	52.8) (r	0.0522	6,6 9	0.148	96	0.01903	۰, د 1	0 319
1411/1.7.2	0.12	776	76	0.10	88.4	801	+20	1927	+26	7.55	2.6	0,1189	1.4	2.153	ć ო	0.1323	2.6	0.87
1411/1.8.1	0.84	173	117	0.70	3.01	128	+ 3.9	-39	+430	49.5	6	0.052	48	0.125	18	0.02005	1.	0.172
1411/1.9.1	1,40	110	54	0,51	1,91	127	+ + 4,1	65	±370	49,5	3,2	0,0585	5,9	0,13	16	0,0199	3,3	0,204
1388/4.1.1	2.77	207	150	0.75	3.59	125.1	+3.9	-439	+ 720	49.6	2.9	0.061	4,4	0.104	28	0.0196	3.2	0.115
1388/4.2.1	1.87	203	151	0.77	3.33	119.3	+3.8	-268	± 570	52.5	ŝ	0.0564	4.9	0.106	23	0.01868	3.2	0.14
1388/4.2.2	1,86	154	97	0,65	2,43	115,4	±4,2	-185	土 720	54,3	3,3	0,0576	6,1	0,106	29	0,01807	3,6	0,125
1388/4.3.1	0,00	152	135	0,92	2,56	124,9	$\pm 3,8$	250	± 170	51,1	3,1	0,0512	7,3	0,138	7,9	0,01956	3,1	0,391
1388/4.3.2	1,32	194	159	0,85	3,28	123,6	$\pm 3,9$	335	± 380	51	б	0,0636	4,7	0,142	17	0,01936	3,2	0,183
1388/4.4.1	1,48	172	103	0,62	2,92	124,5	$\pm 4,1$	255	± 550	50,5	б	0,0631	4,9	0,138	24	0,0195	3,4	0, 14
1388/4.5.1		148	120	0,84	2,49	127, 3	$\pm 4,2$	983	± 270	51	3,2	0,0587	7,7	0,198	14	0,01994	3,3	0,243
1388/4.5.2	2,01	132	80	0,63	2,13	117,4	土7,7	-356	± 910	53,3	6,4	0,0561	6,5	0,101	36	0,0184	6,6	0,185
1388/4.6.1	1,38	406	460	1,17	6,98	125,8	$\pm 3,6$	-341	± 440	50	2,8	0,0513	3,7	0,109	17	0,01971	2,9	0,17
1388/4.6.2	2,51	167	120	0,74	2,94	127	$\pm 4,3$	-519	± 860	49	3,1	0,0578	5,7	0,103	32	0,0199	3,4	0,107
1388/4.7.1	3,44	145	90	0,64	2,4	118,6	±4,3	-770	± 1000	52	3,4	0,0621	5,8	0,088	36	0,01857	3,7	0,101
Примечани	e. Nornem	ности д	зны на v	pobhe 1-s	iema. Pb. и]	Рb* показы	вают доли	и обыкно	венного р	и ралиогеннс	го свин	па. Ошибки в ка	либрові	ке стандарта ()	.77% (не	включена в ук	азанные	
погрешности).	Корректи	ровка на	обыкнс	эвенный с	винец внес	ена по изме	сренному	²⁰⁴ Pb.				ſ	•	•		•		

Peзультаты U-Pb анализа из гранитоидов тындинско-бакаранского комплекса

Рис. 8. Диаграмма с конкордией для цирконов из кварцевых монцонит-порфиров тындинско-бакаранского комплекса (пр. 1388/4)

Наиболее представительный петротипический Бакаранский массив расположен в междуречье Нюкжи и Гилюя. Опробование проводилось в южной части этого массива, где широко развиты кварцевые диориты и в подчиненном количестве кварцевые монцонит-порфиры, а также южнее, в обособленных крупных телах этого комплекса (рис. 2).

Кварцевый диорит внешне представляет собой мелкозернистую массивную розовато-серую породу с редкими крупными (до 2 см в поперечнике) вкрапленниками плагиоклаза. Структура порфировая (рис. 3, пр. 1361/1). Основная масса диорита состоит из кварца 10–15, плагиоклаза (олигоклазандезин) 50–60, роговой обманки 15, калиевого полевого шпата 10–15; вторичных – амфибола, хлорита, серицита 3–4; акцессории – сфен 1, циркон. Из пр. 1361/1 весом 0,3 кг выделена фракция однообразного циркона – 36 прозрачных и полупрозрачных зерен (рис. 14). U-Pb методом получен конкордантный возраст 122,7 ± 2,0 млн лет (рис. 7, табл. 2).

Для контроля из южной части Бакаранского массива к востоку от г.Тында, правого водораздела р. Гилюй (координаты 125°01 00 з.д., 55°10 00 с.ш.) из гранитоидов тындинско-бакаранского комплекса взята пр. 1411/1 кварцевых диоритов весом 0,5 кг, из которой выделена фракция из 45 внешне однообразных желтоватых цирконов и их обломков. U-Pb методом почти для всех зерен получен конкордантный возраст 124,0 ± 2,5 млн лет (рис. 7, табл. 2).

Кварцевый диорит (рис. 3, пр. 1411/1) имеет гипидиоморфнозернистую структуру со следами слабой ориентировки. Он состоит из кварца 10, ортоклаза 5–10, плагиоклаза (андезин) 60, биотита 5–10, роговой обманки 10–12, вторичных минералов – хлорита по биотиту, серицита, карбоната, эпидота в сумме 2–3; акцессории – циркон, сфен. В этих кварцевых диоритах отсутствуют крупные вкрапленники плагиоклаза.

В юго-западной части Бакаранского петротипического массива на левом водоразделе р. Геткан (координаты 124°40 00 з.д., 55°09 00 с.ш.) обнажаются кварцевые монцонит-порфиры, относящиеся к тындинско-бакаранскому комплексу (рис. 3, пр. 1388/4).

Они имеют гранофировую структуру основной массы и состоят из кварца и калиевого полевого шпата (50, из них 20 кварц). Присутствуют крупные вкрапленники (до 0,5 см) плагиоклаза (олигоклаз) 20, биотита и амфибола (до 20). Отмечаются вторичные изменения — серицитизация плагиоклаза, карбонатизация основной массы, хлоритизация биотита; акцессории— циркон, сфен.

Из пр.1388/4 кварцевых монцонит-порфиров весом 0,2 кг выделена фракция из 48 бесцветных полупрозрачных зерен однообразных цирконов и их обломков. U-Pb методом для всех зерен получен конкордантный возраст 122,9 \pm 2,5 млн лет (рис. 8, табл. 2)

Породы тындинско-бакаранского комплекса относятся к умереннощелочному натриевому типу и отличаются высокой глиноземистостью (рис. 12).

Редкоземельные спектры характеризуются плавным графиком спайдер-диаграммы, резким преобладанием легких TR над тяжелыми $(La/Yb)_n = 20, 1-$ 30,6), слабовыраженной отрицательной европиевой аномалией (Eu/Eu = 0,001) и высоким значением (до 356) суммы TR (рис. 11). В мультиэлементный спектр, нормированный на примитивную мантию для комплекса, характерна отрицательная аномалия Hf, Ta, Nb (рис. 15).

Одним из самых распространенных типов гранитоидов Становой складчатой области являются гранитоиды, относящиеся к мезозойскому ларбинскому комплексу, в западном сегменте рассматриваемой территории в верховье р. Олекма и басс. р. Нюкжа. Некоторые исследователи [5] относят их к тындинско-бакаранскому комплексу юры, другие [3] считают их раннемеловыми, различающимися по вещественному составу и структурнотекстурным особенностям.

Породы ларбинского комплекса слагают крупный по площади пологозалегающий Чильчинский массив по правому водоразделу р. Нюкжа, коренные выходы которых обнажены в ж.д. выемке (координаты 122°22 з.д., 56°03 с.ш.). Они представлены габбро, монцодиоритами, кварцевыми монцодиоритами, гранитами, граносиенитами, сиеногранодиоритами порфировидными, прорывающими докембрийские габброиды унгкурхейского комплекса, древнестановые плагиограниты, лейкограниты и глубокометаморфизованные образования нюкжинской серии.

Монцодиориты ларбинского комплекса (рис. 3, пр. 17/6) внешне представляют собой массивную однородную мелкозернистую равномернозернистую пеструю зеленовато-серую породу. Она состоит из плагиоклаза (андезин) 25–30, роговой обманки 25–30, калиевого полевого шпата (ортоклаз) 10–15, биотита 7–10, кварца 5–7; вторичные – хлорит, карбонат до 1–2; акцессорные – сфен, циркон 1; рудные – магнетит, гематит. Структура монцонитовая. Монцодиориты относятся к умереннощелочному ряду калиево-натриевого типа щелочности.

Кварцевые монцодиориты (рис. 3, пр. 17/17) порфировидные ларбинского комплекса внешне представляют собой массивную светло-розовую породу с крупными вкрапленниками (до 1 см в поперечнике) ортоклаза (до 50) на фоне пестрой мелкозернистой массы других минералов. Состав

Рис. 9. Диаграммы с конкордиями для цирконов из монцодиоритов (пр. 17/6) и кварцевых монцодиоритов порфировидных (пр. 17/17) ларбинского комплекса

кварцевых монцодиоритов: кварц 20–25, плагиоклаз (олигоклаз) 20–25, калиевый полевой шпат (ортоклаз) 15, биотит 7–10, роговая обманка 5; вторичные – хлорит, серицит; акцессорные – сфен 2, циркон; рудные – магнетит, гематит. Структура порфировая. Кварцевые монцодиориты относятся к умереннощелочному ряду калиево-натриевого типа щелочности (рис. 12, 13).

Из пр. 17/6 монцодиорита и пр. 17/17 кварцевого монцодиорита порфировидного весом по 0,5 кг выделены фракции циркона из 44 и более 100 зерен (рис. 14). По результатам U-Pb датирования цирконов получены конкордантные возрасты монцодиоритов $-122 \pm 1,5$ млн лет и кварцевых монцодиоритов порфировидных $-119,7 \pm 2,3$ млн лет (рис. 9, 10, табл. 3).

Относительно распределения редкоземельных элементов при сравнении ларбинского и тындинско-бакаранского комплексов, близких по времени образования, можно сказать, что они имеют сходный характер. Спектры TR гранитов ларбинского комплекса отличаются резкодифференцированным распределением, содержание легких элементов по отношению к тяжелым (La/Yb)_n = от 16,5

Рис. 10. Диаграммы с конкордией для цирконов из гранитпорфиров (пр. 17/14) аинглинского комплекса (общий вид и фрагмент)

(пр. 17/6) до 43,2 (пр. 17/17), отмечается отчетливо выраженная отрицательная европиевая аномалия (Eu/Eu = 0,005), связанная с фракционированием полевых шпатов в расплаве (рис. 11). Породы ларбинского комплекса из всех анализируемых комплексов отличаются максимальным содержанием TR. Их сумма 556,23, что более характерно для щелочных пород, обогащенных редкими элементами (рис. 15)

Завершают этап процессов гранитообразования Становой области появление однофазных мелких штоков и крутопадающих даек гранитов, граносиенитов, гранит-порфиров аинглинского комплекса, прорывающих гранитоиды ларбинского комплексса раннего мела, а также все докембрийские гранитоиды и архейские образования. Аинглинский комплекс относится к калиево-натриевой высокоглиноземистой низкощелочной гранит-лейкогранитовой группе (рис. 12, 13).

Для датирования были выбраны гранитоиды (пр. 17/14) аинглинского комплекса, слагающие рои даек (рис. 10) в басс. р. Нюкжа, прорывающие гранитоиды ларбинского комплекса раннемелового возраста.

К, отн. ед.	0,151	0,094	0,104	0,17	0,211	0,141	0,202	0,168	0,135	0,195	0,122	0,106	0,171	0,14	0,596	0,687	0,501	0,668	0,74	0,709	0,528	0,788	0,765	0,808	0,601	зключена в
₩ 7	1,5	1,7	2,1	1,6	1,2	1,2	1,5	1,4	1,2	1,2	1,6	1,6	1,1	1,5	3,3	3,2	3,2	3,2	3,2	3,2	3,3	3,1	3,2	3,2	3,2	60% (не
²⁰⁶ Pb*/ ²³⁸ U	0,01825	0,01845	0,0187	0,01878	0,01885	0,01891	0,01918	0,01919	0,0192	0,01936	0,01944	0,01959	0,01962	0,01998	0,0188	0,01877	0,01916	0,01876	0,01886	0,01835	0,01839	0,01943	0,01861	0,0184	0,01874	18 и 17/17 – 0.
十 %	10	18	20	9,2	5,8	8,4	7,3	8,4	6	6,1	13	16	6,5	11	5,5	4,7	6,3	4,8	4,3	4,5	6,2	4	4,1	3,9	5,3	17/6 - 0.4
²⁰⁷ Pb*/ ²³⁵ U	0,119	0,118	0,113	0,126	0, 1233	0,133	0,141	0,121	0,125	0,124	0,132	0,119	0,1268	0,117	0,1301	0, 1239	0,1259	0,1254	0,1253	0,1226	0, 1229	0,1301	0,1278	0,1249	0,125	ке станларта
十 %	9,9	18	20	9,1	5,7	8,3	7,2	8,3	6	9	13	15	6,4	11	4,4	3,4	2,4	2,7	2,4	3,2	3,4	1,5	2,7	2,3	3,2	калибров
²⁰⁷ Pb*/ ²⁰⁶ Pb*	0,0473	0,0464	0,0439	0,0488	0,0474	0,051	0,0532	0,0459	0,0474	0,0465	0,0492	0,0442	0,0469	0,0426	0,0502	0,0479	0,0516	0,0502	0,0494	0,0485	0,052	0,05036	0,0498	0,0492	0,0505	нца. Ошибки в
÷	1,5	1,7	2,1	1,6	1,2	1,2	1,5	1,4	1,2	1,2	1,6	1,6	1,1	1,5	3,3	3,2	3,2	3,2	3,2	3,2	3,3	3,1	3,2	3,2	3,2	ного свин
²³⁸ U/ ²⁰⁶ Pb*	54,79	54, 18	53,5	53,25	53,04	52,87	52, 13	52,09	52,07	51,65	51,44	51,05	50,97	50,04	53,2	53,3	51,9	53,2	52,9	54,5	54,1	51,3	53,7	54,3	53,2	о и ралиоген
acT ²³⁸ U	$\pm 1,7$	+2	土2,5	± 1.9	$\pm 1,5$	$\pm 1,4$	± 1.8	± 1.7	± 1.5	± 1.5	$\pm 1,9$	+2	±1,4	± 1.9	$\pm 3,9$	$\pm 3,8$	$\pm 3,9$	±3,8	$\pm 3,8$	$\pm 3,7$	$\pm 3,8$	$\pm 3,8$	$\pm 3,7$	$\pm 3,7$	$\pm 3,8$	новенного
Bo3p ²⁰⁶ Pb/	116,6	117,9	119,4	119,9	120,4	120,8	122,5	122,6	122,6	123,6	124,1	125,0	125,2	127,5	120,1	119,9	122,4	119,8	120,4	117,2	117,5	124,1	118,9	117,5	119,7	оли обыкт
²⁰⁶ Pb*, г/т	8,46	4,34	4,24	8,92	18,1	12,1	8,56	10,1	11,3	19,7	6,2	5,62	24,2	9,33	2.78	7.41	9.6	7.39	9.56	5.5	4.49	25.5	7.74	10.9	5.33	OKA35IBAROT JO
²³² Th/ ²³⁸ U	0,85	0,29	0,81	1,06	1,69	1,31	1,34	1,39	1,31	1,83	0,97	1,17	2,74	1,40	0,97	0,80	1, 19	1,46	1,56	0,87	1,25	1,93	1,46	1,94	0,70	а. Pb. и Pb* п
Th, r/T	442	LL	204	564	1823	935	668	814	858	2094	345	374	3790	730	162	355	668	647	887	293	342	2851	687	1292	223	DBHe 1-sigm
U, r/T	535	269	260	548	1116	737	516	606	677	1181	367	330	1429	539	172	460	580	457	589	349	283	1526	484	686	330	ланы на vpc
²⁰⁶ Pb _c , %	0,88	1,56	1,57	0,75	0,41	0,59	0,65	0,63	0,81	0,42	1,10	1,22	0,58	0,86	0,00	0,00	0,50	0,22	0,15	0,00	0,45	0,23	0,00	0,00	0,27	огрешности
Пробы и точки измерения	17/6.2.1	17/6.6.1	17/6.5.2	17/6.8.1	17/6.7.1	17/6.10.1	17/6.4.2	17/6.3.1	17/6.11.1	17/6.4.1	17/6.2.2	17/6.9.1	17/6.1.1	17/6.5.1	17/17.1.1	17/17.2.1	17/17.2.2	17/17.3.1	17/17.4.1	17/17.5.1	17/17.6.1	17/17.3.2	17/17.7.1	17/17.7.2	17/17.8.1	Примечание. П

Таблица 4

отн. ед.

Ъ,

%

+1

²⁰⁶Pb*/²³⁸U

%

+|

²⁰⁷Pb*/²³⁵U

%

+|

²⁰⁷Pb*/²⁰⁶Pb*

% +

238U/206Pb*

Bo3pacr ²⁰⁶Pb/²³⁸U

²⁰⁶Pb*, г/т

²³²Th/²³⁸U

Th, r/T

U, r/T

% ²⁰⁶Pb_c,9

Пробы и точки измерения 1.6 l.4

 $0.01818 \\ 0.01821$

0,118

13

0.0472

±1.8 ±2.2

0.0444

0, 111

0,1260,1290,1950,1690,1690,11400,3170,2170,2170,2170,217

 $1.4 \\ 1.7$

 $0,0193 \\ 0.06206$

 $0,118 \\ 0,466$

 $0.0444 \\ 0.0545$

±2.0 ±5.7

Результаты U-Pb анализа цирконов из гранит-порфиров аинглинского комплекса

указанные погрешности). Корректировка на обыкновенный свинец внесена по измеренному ²⁰⁴Pb.

0.01893 0.01913 0.01834 0.018860.0188913 15 8,5 8,5 11 3,6 3,7,7 3,6 0,116 $0,120 \\ 0,125 \\ 0,135$ 0,117 7,1 3,53,23,23,211 0.0513 0.04470,04600.0479 0.04611.6 1.7 1.7 1.7 1.7 1.7 54.99 54,90 54.53 53.02 52.93 52.82 52.27 51.80 16.11 ± 1.6 ± 1.9 ± 1.5 ± 2.0 ± 1.7 $\begin{array}{c} 116.2 \\ 116.3 \\ 117.1 \\ 120.4 \\ 120.7 \\ 120.9 \\ 122.2 \\ 122.2 \\ 388.1 \\ 388.1 \end{array}$ 4,98 5,12 5,12 9,63 9,63 5,58 5,58 5,58 5,58 5,12 6,16 6,16 1,171,160,930,961,001,421,421,261,260,430,43356 179 549 549 329 1773 263 48 315 159 590 341 1290 1290 116 $\begin{array}{c} 1,30\\ 1,23\\ 0,56\\ 0,74\\ 0,59\\ 0,14\\ 0,66\\ 3,30\\ 0,00\\ 0,00\\ \end{array}$ 17/14.7.117/14.6.117/14.8.1 17/14.1.1 17/14.4.1 17/14.3.1 17/14.3.1 17/14.9.1 17/14.5.1

П р и м е ч а н и е. Погрешности даны на уровне 1-sigma. Рь⁶ и Рь* показывают доли обыкновенного и радиогенного свинца. Ошибки в калибровке стандарта 0,45% (не включена в указанные погрешности). Корректировка на обыкновенный свинец внесена по измеренному 204Pb.

Таблица 3

Результаты U-Pb анализа цирконов из гранитоидов ларбинского комплекса

Рис. 11. Распределение редкоземельных элементов в гранитоидах Становой складчатой области *1* – TM-8/3, *2* – 998А (граниты биотитовые, тукурингрский комплекс); *3* – 1388/4 (монцонит-порфир) и *4* – 1361/1, *5* – 1411/1 (кварцевые диориты, тындинско-бакаранский); *6* – 17/6 (монцодиорит, ларбинский); 7 – TM-9/1 (граниты биотитовые, тукурингрский); *8* – 17/17 (кварцевый монцодиорит порфировидный, ларбинский); *9* – 17/14 (гранит-порфир, аинглинский)

Рис. 12. Диаграмма ТАС для неизмененных разностей пород (за исключением древнестанового комплекса)

I – тындинско-бакаранский, 2 – тукурингрский, 3 – ларбинский, 4 – аинглинский комплексы

Рис. 13. Расположение комплексов на дискриминационных диаграммах для гранитоидов Дж. Пирса (пунктирная линия на диаграммах Nb-Y и Ta-Yb — граница для аномальных рифтов)

ORG – граниты океанических хребтов; WRG – внутриплитные граниты; VAG – граниты вулканических дуг; syn-COLG – синколлизионные граниты.

1 – тукурингрский, 2 – тындинско-бакаранский, 3 – ларбинский, 4 – аинглинский комплексы

Дайки сложены массивными гранит-порфирами (рис. 3, пр. 17/14), состоящими из кварца 40, плагиоклаза (№ 30–35) 30, калиевого полевого шпата 20, роговой обманки 8, биотита 2. Акцессорные минералы – циркон, сфен, апатит. Плагиоклаз образует вытянутые идиоморфные таблицы размером до 1,3 мм, калиевый полевой шпат (ортоклаз) таблитчатой формы размером до 0,9 мм, кварц образует микропегматитовые вростки в калиевом полевом шпате и отдельные ксеноморфные выделения размером до 0,6 мм. Зеленоватая роговая обманка образует ксеноморфные зерна размером до 1,1 мм. Чешуйки коричневого биотита до 0,5 мм.

Редкоземельный спектр гранит-порфиров имеет резкодифференцированный характер распределения, характеризуется повышенным содержанием легких элементов по отношению к тяжелым (La/Yb) n = 40 и отчетливо выраженной отрицательной европиевой аномалией (Eu/Eu* = 0,001), а также высоким содержанием Rb/Sr > 0,5, что говорит о глубоком рэлеевском фракционировании (рис. 11).

Из пр. 17/14 весом 0,4 кг выделено 36 зерен разнообразного прозрачного желтого циркона. Все зерна имеют нарушенную магматическую зональность. По результатам U-Pb датирования получены конкордантные возрасты цирконов: $121,3 \pm 1,6$ млн лет по пяти точкам 3.1, 4.1, 5.1, 8.1, 1.1; $116,6 \pm 2,1$ млн лет по трем точкам 9.1, 6.1, 7.1, $119,6 \pm 1,3$ млн лет по восьми точкам 7.1, 6.1, 9.1, 5.1, 8.1, 1.1, 4.1, 3.1 (рис. 10, табл. 4). Учитывая четкое прорывание дайками гранит-порфиров гранитоидов ларбинского комплекса с возрастом $119,7 \pm 2,3$ млн лет, можно с уверенностью считать, что возраст гранит-порфиров составляет 116,6 \pm 2,1 млн лет (табл. 5, рис. 14).

При сравнении мезозойских гранитоидов Алданского щита на примере интрузивных образований Рябинового массива, отнесенного к алданскому комплексу с мезозойскими гранитоидами Становой складчатой области, можно выявить сходство и различия (рис. 15).

Во-первых, в составе гранитоидов Рябинового массива преобладают высокощелочные ультракалиевые щелочнополевошпатовые сиениты, сиенитпорфиры и нордмаркиты алданского комплекса, реже отмечаются лампрофиры и эруптивные брекчии, входящие в состав тобукского комплекса.

Возраст пород Рябинового массива по результатам U-Pb метода датирования от 133–135 до 147 млн лет, что подтверждается данными, полученными ⁸⁷Sr/⁸⁶Sr методом (127–143 млн лет). Это соответствует публикуемым в статье возрастным данным для гранитоидов тукурингрского комплекса. Хотя при описании зерен циркона необходимо отметить, что облик цирконов из гранитов тукурингрского комплекса характеризуется отчетливым идиоморфизмом и тонкой магматической зональностью, а цирконы из гранитоидов Рябинового массива явно претерпели воздействие метасоматическая зональность почти нарушена или вовсе отсутствует.

Во-вторых, относительно геохимических характеристик надо отметить наличие положительной европиевой и небольшой отрицательной гадолиниевой аномалий, а также содержание легких редких

Рис. 14. Катодолюминесцентное изображение цирконов из гранитов тукурингрского комплекса (ТМ-8/3, ТМ-9/1, 998А), кварцевых диоритов (1361/1, 1411/1), монцонит-порфиров (1388/4) тындинско-бакаранского комплекса, монцодиоритов (17/6) и порфировидных (17/17) ларбинского комплекса, гранит-порфиров (17/14) аинглинского комплекса

Рис. 15. Мультиэлементные спектры для пород, нормированные на примитивную мантию (С. Р. Тейлор, С. М. Мак-Леннан, 1985)

1 – тукурингрский, 2 – ларбинский, 3 – аинглинский, 4 – тындинско-бакаранский комплексы

земель около 10-30 ppm) для наименее измененных гранитоидов Рябинового массива и гранитов тукурингрского комплекса. В остальном спайдер-диаграммы существенно отличаются. Бросается в глаза плавность линий распределения редкоземельных элементов в гранитоидах Становой области и пилообразность по этой характеристике гранитоидов рябинового комплекса Алданского щита, а также сильное обеднение гранитоидов тукурингрского комплекса тяжелыми редкими землями. Для геодинамической характеристики можно отметить сходные обстановки формирования пород Рябинового массива и тукурингрского, тындинско-бакаранского и ларбинского комплексов - все области значений точек попадают в syn-COLG и VAG поля (рис. 13).

Для Рябинового массива характерна ярко выраженная литохалькофильная геохимическая специализация на Au, Ag, Pb, Cu, Mo, W, а для гранитоидов Становой области – на Hf, Pb, Sr, Ba и Zn [8].

Предлагаемая статья является только первой частью произведенных геохронологических исследований в зоне сочленения Алданского щита и Становой складчатой области. По полученным результатам, уточняя Алдано-Забайкальскую серийную легенду, мы предлагаем следующую последовательность возрастов (млн лет) мезозойского гранитообразования:

— тукурингрский (позднестановой) комплекс гранитов биотитовых $138 \pm 2 - 143.9 \pm 3.6$;

— тындинско-бакаранский комплекс диоритов, кварцевых диоритов, монцонит-порфиров 122,9 \pm 2,5 – 124,0 \pm 2,5;

— ларбинский комплекс монцодиоритов, кварцевых монцодиоритов порфировидных 119,7 \pm 2,3 – 122,0 \pm 1,5;

- аинглинский комплекс гранитов, гранит-порфиров 116,6 ± 2,1.

Относительно предлагаемой последовательности надо отметить, что возрасты гранитоидов тындинско-бакаранского и ларбинского комплексов очень близки. После анализа результатов по изотопии наблюдаются перекрывающие друг друга возрастные значения, геохимические данные также свидетельствуют об их сходстве (рис. 15, табл. 5), поэтому

Характеристика цирконов из гранитоидов тукурингрского, тындинско-бакаранского, ларбинского и аинглинского комплексов Становой складчатой области

Породы и название комплекса	Типоморфизм	Идентификация цирконов	U-Pb возраст, млн лет	Номера точек измерения в зернах циркона и типичные предста- вители групп (рис. 14)
Гранит биотитовый порфировидный, пр. 998А,	Бесцветные зерна идиоморфные, субидиоморфные призматические и их обломки длиной 123-416 мкм.	Магматиче- ский	Конкордантный 138 ± 2	Оболочка: 1.2, 2.1, 4.2, 5.1, 1.3, 3.2, 3.3, 6.3
тукурингрский позднестановой	Ку = 2,15–3,0. В КЛ зерна грубо зо- нальные со слабым свечением. Свет-	Унаследо- ванные ядра	Конкордантный 2688 ± 21	Ядерная часть: 1.1, 3.1, 6.1, 4.1
шайба 1569	лочечная темная часть незональная. Осо- лочечная темная часть зерен имеет грубую зональность. U = 39–617 г/т,	субстрата	Дискордантный 2744 ± 29	Точки: 3.1 (ядро)
	Th/U = 0,07-0,75		Конкордантный 136,7 ± 6,1	Точки: 3.3, 3.2 (нижнее пересече- ние конкордии)
			Дискордантный 2321 ± 34	Точки: 1.1 (ядро)
			Конкордантный 143,1 ± 7,2	Точки: 1.2, 1.3 (оболочка) (ниж- нее пересечение конкордии)
Гранит биотито- вый, пр. ТМ-8/3, тукурингрский	Прозрачные желтые зерна субидио- морфные длиннопризматические дли- ной 81–400 мкм, Ку = 1,39–3,12. В КЛ зерна с ярким свечением, большин-	Магматиче- ский	Конкордантный 149,9 ± 3,6	Оболочка: 1.1, 2.1, 2.2, 3.2, 3.3, 5.1, 6.2 Центральная часть: 3.1
позднестановой- комплекс, шайба 1676	ство зерен с тонкой зональностью обо- лочки и ядерной части. Одно крупное зерно имеет грубую зональность (4.1). U = 49-324 г/т, Th/U = 0,02-0,64	Унаследо- ванные ядра субстрата	Дискордантный 2647 ± 18 Конкордантный 145 2 ± 5 0	Ядерная часть: 4.1, 6.1 Оболочка 6.2
Гранит биотито- вый, пр. ТМ-9/1,	Полупрозрачные субидиоморфные длиннопризматические зерна и об- ломки желтоватого цвета длиной	Магматиче- ский	Конкордатный 142,3 ± 3,4	Оболочка: 1.1, 2.1, 3.1, 6.1, 7.1, 8.1, 10.1
тукурингрский позднестановой-	106–270 мкм, Ку = 1,77–4,60. В КЛ большинство зерен двухфазного стро-	Унаследо- ванные ядра	Дискордантный 2689 ± 59	Центральная часть: 4.1
шайба 1676	сти зерен и тонкая зональная часть – внешняя оболочка. U = $364-792$ г/т, Th/U = $0,09-0,40$	субстрата	Дискордантный 2279 ± 24 Конкордантный 135,1 ± 4,3	Центральная часть: 1.2 Оболочка: 1.1
Кварцевый мон- цонит-порфир, пр. 1388/4, тындинско-бака- ранский комплекс, шайба 1758	Бесцветные полупрозрачные идио- морфные и субидиоморфные удли- ненно-призматические кристаллы и их обломки длиной 87–440 мкм, Ку = 1,16–2,45. В КЛ зерна с ярким свечением, тонкой и секториаль- ной зональностью. U = 132–406 г/т, Th/U = 0,62–1,17	Магматиче- ский	Конкордантный 122,9 ± 2,5	Центральная часть: 2.1, 3.2, 5.1, 6.1 Краевая часть: 1.1, 2.2, 3.1, 5.2, 6.2, 7.1, 4.1
Кварцевый диорит, пр. 1411/1, тындинско-бака- ранский комплекс, шайба 1758	Прозрачные и полупрозрачные бледно-желтые идиоморфные и суб- идиоморфные удлиненно-призма- тические кристаллы и их обломки длиной 117–344 мкм, Ку = 1,54-3,13.	Магматиче- ский	Конкордантный 124,0 ± 2,5	Центральная часть: 5.1 Краевая часть: 1.1, 2.1, 3.1, 4.2, 5.2, 6.1, 7.1, 8.1, 9.1
	В КЛІ зерна с ярким свечением, тон- кой и секториальной зональностью. U = 110-246 г/т, Th/U = 0,45-1,00	Унаследо- ванные ядра субстрата	Дискордантный 801 ± 20	Ядро: 7.2
Кварцевый диорит, пр. 1361/1, тындинско-бака- ранский комплекс, шайба 1758	Прозрачные и полупрозрачные желтые идиоморфные и субидиоморфные уд- линенно-призматические кристаллы и их обломки с оранжевыми включени- ями длиной 128–385 мкм, Ку = 1,81–	Магматиче- ский	Конкордантный 122,2,0 ± 3,6	Центральная часть: 2.1, 4.1 Краевая часть: 1.2, 2.2, 3.1, 4.2, 5.1, 6.1, 7.1, 8.1, 9.1
	5,56. В КЛ зерна с ярким свечением, тонкой и секториальной зональностью или ее следами. U = $328-695$ г/т, Th/U = $0.46-1.30$	Унаследо- ванные ядра субстрата	Дискордантный 1876 ± 12	Ядро: 1.1

Породы и название комплекса	Типоморфизм	Идентификация цирконов	U-Pb возраст, млн лет	Номера точек измерения в зернах циркона и типичные предста- вители групп (рис. 14)
Монцодиорит, пр. 17/6, ларбинский ком- плекс, шайба 1534	Прозрачные идиоморфные призма- тические кристаллы и их обломки желтого и коричневого цвета длиной 150–300 мкм, Ку = 1–4. В КЛ кри- сталлы двухфазного строения. Темная центральная часть с элементами секто- риальности и светлая краевая с нару- шенной магматической зональностью и секториальностью. U = 260–1429 г/т, Th/U = 0,29–2,74	Магматиче- ский	Конкордантный 122 ± 1,5	Центральная часть: 1.1, 3.1, 4.1, 5.1 Светлая краевая часть: 2.1, 2.2, 4.2, 5.2, 6.1, 11.1, 7.1, 8.1, 9.1, 10.1, 11.1
Кварцевый монцо- диорит, пр. 17/17, ларбинский ком- плекс, шайба 1676	Прозрачные идиоморфные и субидио- морфные длиннопризматичекие кри- сталлы и их обломки желтого цвета длиной 87–321 мкм, Ку = 1,10–3,47. В КЛ кристаллы с умеренным све- чением, с тонкой зональностью в краевых частях, в центральных – почти черные со следами грубой зо- нальности. U = 172–186 до 1523 г/т, Th/U = 0,70–1,94	Магматиче- ский	Конкордантный 119,7 ± 2,3	Центральная часть: 2.1, 3.2, 6.1, 7.2 Тонкозональная краевая часть: 1.1, 2.2, 3.1, 4.1, 5.1, 7.1, 8.1
Гранит-порфир, пр. 17/14, аинглинский ком- плекс, шайба 1839	Прозрачные идиоморфные призма- тические кристаллы желтого цвета и их обломки. Длина кристаллов 150–350 мкм, Ку = 1,2–4. В КЛ кри- сталлы двухфазного строения. Светлая центральная часть с измененной зо- нальностью и темная краевая с нару- шенной магматической зональностью. U = 315–323 г/т, Th/U = 0,93–1,17	Магматиче- ский	Конкордантный 116,6 ± 2,1	Краевая часть: 7.1, 6.1

напрашивается вывод об их объединении в один комплекс под названием тындинско-бакаранский, существовавший изначально.

1. Ларин А.М., Котов А.Б., Сольников Е.Б. и др. Новые данные о возрасте гранитов кодарского и тукурингрского комплексов, Восточная Сибирь: геодинамические следствия // Докл. РАН. 2000. Т. 8. № 3. – С. 267–279.

2. Ларин А.М., Котов А.Б., Сальникова Е.Б. и др. Мезозойские граниты Чубачинского массива тукурингрского комплекса (Джугджуро-Становая складчатая область): новые геохимические и изотопно-геохимические данные // Петрология. 2001. Т. 9. № 4. – С. 417–432.

3. *Миронюк Е.П., Тимашков А.Н.* и др. Объяснительная записка к Государственной геологической карте РФ масштаба 1 : 1 000 000 (второе поколение), лист О-(50)-51 «Алдан». 1999. – 42 с.

4. Миронюк Е.П., Тимашков А.Н., Чухонин А.П., Ризванова Н.Г. Хронологические исследования фундамента Сибирской платформы // Регион. геология и металлогения. 1996. № 5. – С. 95–110.

5. Миронюк Е.П., Пушкарев Ю.Д., Тимашков А.Н. и др. Изотопный возраст древнестановых плагиогранитов (Алданский щит) // Докл. РАН. 1996. Т. 349. № 6. – С. 800–803.

6. Петрук Н.Н., Шилова М.Н. и др. Объяснительная записка к Государственной геологической карте РФ масштаба 1 : 1 000 000 (третье поколение), лист N-51 «Сковородино». 2009. – 111 с.

7. Утробин Д.В., Максимов Е.П., Хотина Е.Б. Легенда Алданской серии листов Государственной геологической карты РФ масштаба 1 : 200 000 (издание второе) с объяснительной запиской. – Алдан. 2000. – С. 84.

8. Шатова Н.В. Петрография и геохимия щелочных интрузивных пород и метасоматитов Рябинового рудного поля (Южная Якутия) // Современные проблемы магматизма и метаморфизма: Материалы Всерос. конф., посвященной 150-летию академика Ф. Ю. Левинсона и 100-летию профессора Г. М. Саранчиной. – СПб.: Изд-во СПбГУ, 2012. – С. 343–347.

Тимашков Александр Николаевич – науч. сотрудник, ВСЕГЕИ.

Шатова Надежда Витальевна – вед. инженер, ВСЕГЕИ. <nadezhda_shatova@vsegei.ru>.

Бережная Наталья Георгиевна – канд. геол.-минер. наук, зав. сектором, ВСЕГЕИ. <nataliaber@mail.ru>.

Балашова Юлия Сергеевна – вед. инженер, ВСЕГЕИ. <yulia balashova@rambler.ru>.

Морозова Алена Борисовна – ст. преподаватель СПбГУ. <a.morozova@spbu.ru>.

Львов Павел Алексеевич – инженер 1 категории, ВСЕГЕИ.

Шокальский Сергей Павлович – канд. геол.-минер. наук, зав. отделом, ВСЕГЕИ. <sergey_shokalsky@vsegei.ru>.

Плеханов Анатолий Олегович – инженер 2 категории, ВСЕГЕИ.

Молчанов Анатолий Васильевич – доктор геол.-минер. наук, зав. отделом, ВСЕГЕИ. <anatoly_molchanov@vsegei.ru>. Радьков Александр Владимирович – ст. науч. сотрудник, ВСЕГЕИ. <Alexander_Radkov@vsegei.ru>.