Т. Ю. ТОЛМАЧЕВА

БИОСТРАТИГРАФИЯ И БИОГЕОГРАФИЯ КОНОДОНТОВ ОРДОВИКА
ЗАПАДНОЙ ЧАСТИ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА
Научный редактор
доктор геолого-минералогических наук,
профессор А.С. Алексеев

Рецензент
доктор геолого-минералогических наук,
член-корреспондент РАН К.Е. Дегтярев

Толмачева Т.Ю.

Обобщены результаты изучения конодонтов из ордовикских отложений Казахстана и Северной Киргизии. Установлен таксономический состав ранее малоизученной фауны из широкого спектра фаций от мелководных и прибрежных обстановок до глубоководных отложений пелагиали. Предложены биостратиграфические шкалы по конодонтам для кремнистых относительно глубоководных и карбонатных мелководных фаций. Проанализированы современные подходы к биогеографическому районированию ордовикских конодонтов. Океаническая биогеографическая область типизирована конодонтовой фауной из кремнистых пелагических отложений Казахстана. Районирование мелководноморских неритовых фаун Казахстана и Северной Киргизии позволило установить их биогеографическое сходство с фаунами Восточной Гондваны (Южный и Северный Китай, Австралия, Тарим). Находки фекальных пеллет конодонтов из кремнистых разрезов позднего кембрия и раннего ордовика позволили уточнить мультиэлементные составы конодонтовых аппаратов. Пеллеты являются свидетельством существования в пелагиали древних океанов развитых гетеротрофных сообществ и указывают на трофические связи конодонтов с мелкими пелагическими членистоногими.

Для широкого круга специалистов, интересующихся фауной ордовикского времени, стратиграфией ордовика Центральной Азии, вопросами био- и палеогеографии, палеобиологии древних экосистем.

Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований по проекту № 14-05-07027, не подлежит продаже

© Т.Ю. Толмачева, 2014
© Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского», 2014

ОГЛАВЛЕНИЕ

Предисловие ... 5

Геологическое строение изученных толщ и характеристика конодонтовых комплексов палеозоид западной части Центрально-Азиатского складчатого пояса (Казахстан и Северная Киргизия) .. 7

<table>
<thead>
<tr>
<th>Геологическое строение изученных толщ и характеристика конодонтовых комплексов палеозоид западной части Центрально-Азиатского складчатого пояса (Казахстан и Северная Киргизия)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Кремнисто-терригенные и кремнисто-вулканогенные комплексы</td>
<td>8</td>
</tr>
<tr>
<td>Ерментау-Бурултасская подзона Ерментау-Чуилийской зоны (Южный Казахстан)</td>
<td>10</td>
</tr>
<tr>
<td>Кипчакский (Джалан-Найманский) район Ерментау-Чуилийской зоны (Юго-Западный Казахстан)</td>
<td>23</td>
</tr>
<tr>
<td>Аксу-Ирдырский район Ерментау-Чуилийской зоны (Северный Казахстан)</td>
<td>26</td>
</tr>
<tr>
<td>Бощекуль-Торткудукский район (северо-восток Центрального Казахстана)</td>
<td>29</td>
</tr>
<tr>
<td>Кремнисто-карбонатные комплексы</td>
<td>33</td>
</tr>
<tr>
<td>Чингиз-Тарбагатайская зона (Восточный Казахстан)</td>
<td>48</td>
</tr>
<tr>
<td>Урмбайский район Селеты-Сюгатинской подзоны (Северный Казахстан)</td>
<td>48</td>
</tr>
<tr>
<td>Хребет Кендыктас (Южный Казахстан)</td>
<td>49</td>
</tr>
<tr>
<td>Текелийский район Джунгарского Алатау (Восточный Казахстан)</td>
<td>50</td>
</tr>
<tr>
<td>Чу-Илийские горы (Юго-Западный Казахстан)</td>
<td>51</td>
</tr>
<tr>
<td>Кипчакский (Джалан-Найманский) район (Юго-Западный Казахстан)</td>
<td>54</td>
</tr>
<tr>
<td>Западная часть Киргизского хребта (Северная Киргизия)</td>
<td>58</td>
</tr>
</tbody>
</table>

Биостратиграфическое расчленение по конодонтам ордовика западной части Центрально-Азиатского складчатого пояса ... 61

<table>
<thead>
<tr>
<th>Биостратиграфическое расчленение по конодонтам ордовика западной части Центрально-Азиатского складчатого пояса</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Биостратиграфическая шкала глубоководных отложений</td>
<td>66</td>
</tr>
<tr>
<td>Биостратиграфическая шкала мелководных отложений</td>
<td>73</td>
</tr>
</tbody>
</table>

Биогеографическое районирование западной части Центрально-Азиатского складчатого пояса по конодонтам и палеогеографические реконструкции .. 79

<table>
<thead>
<tr>
<th>Биогеографическое районирование западной части Центрально-Азиатского складчатого пояса по конодонтам и палеогеографические реконструкции</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Океаническая биогеографическая область</td>
<td>86</td>
</tr>
<tr>
<td>Мелководная (неритовая) биогеографическая область</td>
<td>92</td>
</tr>
<tr>
<td>Биогеографическое районирование западной части Центрально-Азиатского складчатого пояса</td>
<td>93</td>
</tr>
<tr>
<td>Палеогеография палеозоид Казахстана</td>
<td>100</td>
</tr>
</tbody>
</table>

Характер ордовикских океанов и биоразнообразие конодонтов .. 103

<table>
<thead>
<tr>
<th>Характер ордовикских океанов и биоразнообразие конодонтов</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Кремнистые пелагические отложения Казахстана</td>
<td>105</td>
</tr>
<tr>
<td>Разнообразие конодонтов западной части Казахстана и Северной Киргизии</td>
<td>107</td>
</tr>
</tbody>
</table>

Палеоэкология конодонтов, их образ жизни и трофические взаимоотношения 114

<table>
<thead>
<tr>
<th>Палеоэкология конодонтов, их образ жизни и трофические взаимоотношения</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Классификация и система обозначений конодонтов</td>
<td>121</td>
</tr>
</tbody>
</table>

Систематические описания конодонтов ... 126

<table>
<thead>
<tr>
<th>Систематические описания конодонтов</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Род Acodus Pander, 1856</td>
<td>126</td>
</tr>
<tr>
<td>Род Anodontus Stouge et Bagnoli, 1988</td>
<td>126</td>
</tr>
<tr>
<td>Род Ansella Fähræus et Hunter, 1985</td>
<td>126</td>
</tr>
<tr>
<td>Род Appaluchignathus Bergström, Carnes, Ethington, Votaw et Wigley, 1974</td>
<td>131</td>
</tr>
<tr>
<td>Род Aurilobodus Xiang, F. Zhang, 1983</td>
<td>132</td>
</tr>
</tbody>
</table>
Род Chiganodus Tolmacheva gen. nov. .. 133
Род Colaptocorus Kennedy, 1994 ... 134
Род Cornuodus Fähraeus, 1966 ... 135
Род Casticonus Rasmussen, 2001 .. 136
Род Cruxodus Tolmacheva gen. nov... 137
Род Decoriconus Cooper, 1975 ... 138
Род Erraticodon Dzik, 1978 ... —
Род Fahraeudos Stouge et Bagnoli, 1988 .. 140
Род Histiodella Harris, 1962 ... 142
Род Juanognathus Serpagli, 1974 .. 146
Род Kallidontus Pyle et Barnes, 2002 .. 147
Род Lundodus Bagnoli et Stouge, 1997 .. 149
Род Naimanodus Tolmacheva, 2013 .. 150
Род Oelandodus van Wamel, 1974 .. 151
Род Oeikodus Lindström, 1955 ... —
Род Paracordylodus Lindström, 1955 .. 152
Род Parapanderodus Stouge, 1984 .. 154
Род Periodon Hadding, 1913 ... 155
Род Prioniodus Pander, 1856 ... 157
Род Protioniodus McTavish, 1973 .. 158
Род Scabbardeva Orchard, 1980 ... 159
Род Scolopodus Pander, 1856 ... 160
Род Spinodus Dzik, 1976 ... 162
Род Triangulodus van Wamel, 1974 .. 163
Gen. indet. sp. 1 .. 164

Заключение .. 165

Литература .. 167

Приложение 1. Распределение конодонтов в изученных разрезах и местонахождениях 183
Приложение 2. Фототаблицы с конодонтами и другой фауной и объяснения к ним 190
Приложение 3. Фотоизображения текстурных и структурных особенностей изученных разрезов и местонахождений с фауной. .. 258
ПРЕДИСЛОВИЕ

Конодонты — это вымершая группа организмов спорного систематического положения [Aldridge, Briggs, 2009; Turner et al., 2010], значение которой для биостратиграфического расчленения и корреляции палеозойских, в том числе ордовикских отложений является общепризнанным. Однако, несмотря на видимость высокого уровня изученности этой группы фауны в ордовике, сведения по ее распространению и таксономической характеристике во многих регионах мира до сих пор остаются фрагментарными. В частности, вплоть до настоящего времени были исключительно слабо изучены конодонты из ордовикских толщ палеозойской западной части Центрально-Азиатского складчатого пояса.

Сведения о конодонтах из карбонатных отложений Казахстана буквально единичны, а их таксономические описания приведены только для одного разреза (горы Малый Каратау), охватывающего интервал от верхов верхнего кембрия до верхов флюсого яруса нижнего ордовика [Дубинина, 2000]. В других публикациях присутствуют либо отдельные изображения конодонтов [Барсков и др., 1983], либо списки обнаруженных форм (Решения ..., 1991). Кроме того, конодонты в карбонатных отложениях Казахстана исключительно редки; многочисленные попытки извлечения их из известняков показали, что в тепловодных, преимущественно водорослевых карбонатах региона они либо отсутствуют, либо обнаруживаются в небольших количествах, недостаточных для полноценного описания таксономического состава комплексов. Неизученными до последнего времени оставались ордовикские конодонты Киргизии; сведения о них ограничивались только списками в единичных публикациях [Дегтярёв и др., 2012].

России, Средней Азии, Аляски, Таймыра, остро-
ов Арктики.
При этом конодонты ордовикского периода
занимают особое место в эволюции указанной
grуппы фауны. Ордовик был временем самого
начала развития конодонтов, временем резкого
увеличения их биоразнообразия, которое обеспе-
чивалось быстрой и единовременной эволюцией
элементов в аппаратах. Результатом этого явля-
ется специфика таксомонии конодонтов данного
возраста, заключающаяся в многовариантности
мультиэлементного состава аппаратов, многооб-
разии форм и моновидовым составе многих родов.
Быстрой эволюции и высокому разнообразию ко-
нодонтов способствовали особенности ордовик-
ского периода — высокая раздробленность кон-
tинентов при высоком стоянии вод и развитие
обычных мелководных шельфовых бассейнов.
Составы конодонтовых комплексов являются
базовой основой для любого рода дальнейших
построений, в том числе биостратиграфических,
биогеографических и биофациальных. На них
в свою очередь основываются реконструкции
палеогеографии и условий среды геологического
прошлого. Однако все попытки таких глобальных
построений по конодонтам для ордовикского
периода предпринимались только в 70–80-х го-
дах прошлого века [Bergstrom, et al., 1972; Sweet,
Bergstrom, 1984], в настоящее время такие обоб-
щения отсутствуют, несмотря на большой объем
nакопленных знаний о разных палеобассейнах.
Это во многом связано с недостаточностью и не-
dостоверностью фактических данных по составу
ордовикских конодонтовых комплексов во мно-
gих регионах мира. Вплоть до недавнего времени
были значительно более полно охарактеризованы
конодонты из карбонатных отложений шельфов,
tогда как состав фаун, населявших пелагиаль
мелководных бассейнов, был практически не-
известен.
Данная работа является обобщением полу-
ченной на настоящее время информации о коно-
dонтах из ордовикских отложений на территории
Казахстана и Северной Киргизии. Описываются
конодонтовые фауны из широкого спектра фа-
cий — от мелководных карбонатных отложений
dо глубоководных толщ пелагиали открытых мор-
sких бассейнов. Благодаря конодонтам удалось
уточнить, а в ряде случаев полностью изменить
представление о геологическом строении и эво-
lюции сближенных в настоящее время комплек-
сов, которые были сформированы в различных
pалеотектонических обстановках Казахстанского
pалеобассейна. Предложенные биостратиграфи-
ческие шкалы по конодонтам из мелководных
и глубоководных отложений являются основой
для определения возраста и корреляции разно-
фациальных литостратиграфических подразде-
лений. Сравнение таксономического состава ко-
nодонтовых комплексов Казахстана и Северной
Киргизии с фаунами других регионов позволяет
выдвинуть предположения о биогеографиче-
ском сходстве этих регионов, и о взаимном рас-
положении древних платформенных и морских
pалеобассейнов. Одним из наиболее важных ре-
zультатов исследований является описание коно-
dонтов из кремнистых, кремнисто-туффитовых
и кремнисто-вулканогенных толщ, в том числе
входящих в состав офiolитовых и остро-
венных комплексов. В маломощных существенно
bиогенных кремнистых разрезах, сформирован-
ych в глубоководных обстановках абиссальных
равин, фиксируются закономерности осадко-
nакопления, которые являются документальным
отображением климатических изменений в ор-
dовике. Кремнистые отложения позволяют ти-
пизировать конодонтовую палеогеографическую
фауну открытых, в том числе океанических бассейнов,
а кроме того, содержат уникальные объекты —
fакальные пеллеты, состоящие из конодонтовых
eлементов и остатков других организмов. Фекаль-
ные пеллеты не только являются свидетельством
трофических взаимоотношений в древних пела-
gрафических экосистемах, но и позволяют уточнять
состав и строение конодонтовых аппаратов, на
которых базируется систематика ордовикских
конодонтов.
Эта работа стала возможной только благодаря
всем тем, кто оказывал постоянную помощь и со-
dействие в полевых работах на территории Ка-
захстана и Киргизии. Автор глубоко признателен
сотрудникам ГИН РАН К. Е. Дегтярёву, А. В. Ря-
занцеву, А. А. Третьякову, а также К. Н. Шатагину
(ИГЕМ РАН), О. И. Никитиной (Геологический
ин-т им. К. И. Сатпаева, г. Алматы), Л. Е. Попову
(Национальный музей Уэльса, г. Кардифф, Вели-
кобритания), Л. Е. Холмеру (Университет, г. Уп-
pсала, Швеция).
Работы по теме диссертации проводились
при финансовой поддержке грантов РФФИ
02-05-64775-а, 05-05-64832-а, 12-05-00844-а
и 13-04-00629-а.
Ордовикские образования западной части Центрально-Азийского пояса участвуют в строении тектонически сближенных, сложно построенных комплексов островных дуг и микроконтinentов, разделенных офиолитовыми зонами. Они представлены породами очень широкого спектра фациальных обстановок — от мелководных карбонатных отложений прибрежной зоны до глубоководных кремнистых отложений абиссальных равнин. Для каждого типа отложений характерны свои особенности и типы сохранности содержащихся в них конодонтовых комплексов.

Конодонты в биогенных, как правило, полупрозрачных и прозрачных кремнях конденсированных толщ исключительно многочисленны на некоторых стратиграфических уровнях и хорошо видны непосредственно в породе. Конодонтовые элементы в массовом количестве могут встречаться также и в кремнистых алевролитах и яшмах, однако определение конодонтов на поверхностях напластования и сколах непрозрачных пород достаточно проблематично. В кремнистых породах первичный фосфатный состав конодонтовых элементов очень редко сохраняется; чаще конодонтовые элементы представлены в виде пустотелых отпечатков, которые вторично заполнены кремнеземом или окислами железа. В карбонатных породах Казахстана и Северной Киргизии, как правило, фосфатный материал конодонтов сохраняется на поверхности напластования и сколах непрозрачных пород достаточ но проблематично. В кремнистых породах обыч ные фосфаты конодонтов сохраняются; чаще конодонтовые элементы представлены в виде пустотелых отпечатков, которые вторично заполнены кремнеземом или окислами железа. В карбонатных породах Казахстана и Северной Киргизии, как правило, фосфатный материал конодонтов сохраняется на поверхности напластования и сколах непрозрачных пород достаточно проблематично.

Для выделения конодонтов из карбонатов применялись традиционные способы дезинтеграции породы 12–15% уксусной или муравьиной кислотой с использованием отработанной кислоты (с предыдущих циклов растворения) в качестве буферного раствора [Сергеева, Машкова, 1972; Mawson, 1987]. Отситованные фракции высушенного остатка (1,0–0,068 мм) были обработаны тяжелой жидкостью (бромоформом).

Химическое выделение конодонтов из кремнистых пород на практике используется исключительно редко [Zholkaidarov, 1998; Обут и др., 2006], так как требует хорошей лабораторной базы для работы с плавиковой (фтороводородной) кислотой и применения только к хорошо сохранившимся элементам фосфатного состава. В связи с этим в кремнистых и терригенных породах Казахстана конодонты традиционно изучались и изучаются на сколах и поверхностях напластования, реже на параллельно им ориентированных спилах пород [Двойченко, Абаимова, 1986]. Однако такой способ изучения конодонтов дает только ограниченное представление о морфологии элементов, поскольку их невозможно наблюдать в объеме. Степень диагностичности видов различна и напрямую связана с морфологическими особенностями конодонтовых элементов разных таксонов. Наиболее легко распознаются конодонты со стержневыми S элементами, такие как Paracordylodus gracilis, Oeikodus evae и представители рода Periodon. Эти виды выявляются даже при единичных находках и всегда присутствуют в списках конодонтов из кремнистых местонахождений соответствующего возраста. Например, для верхнего ордовика Казахстана диагностическими видами являются Periodon grandis и Hamarodus europaeus. Конические элементы с простой морфологией, например Scabardella altipes, более сложны для определения и могут быть перепутаны с рядом других видов. Кроме того, из кремнистых пород сложно получить представительные по количеству элементов коллекции конодонтов, необходимые для описания полного таксономического состава комплексов. В результате точная диагностика в кремнях возможна только для
доминирующих таксонов; редкие виды либо не распознаются, либо идентифицируются неуверенно.

Для изучения конодонтов, которые невозможно извлечь из породы, изготовлялись ориентированные тонкие пластины или шлифы. Эта трудоемкая работа позволила решить сразу несколько задач, в том числе и утилитарную проблему хранения объемных коллекций каменного материала. В шлифах конодонтов можно видеть с двух сторон, что необходимо для точного определения вида. Достаточно качественное изображение конодонтовых элементов из кремней можно получить фотографируя их в проходящем или в отраженном свете через предметное стекло в шлифах. Кроме того, в шлифах можно наблюдать состав и структуру группировок конодонтовых элементов и ранние онтогенетические стадии конодонтовых элементов.

Надо отметить, что изготовление стандартных шлифов вслепую из массы породы не дает положительных результатов при незначительном содержании конодонтовых элементов в породе. Стандартные шлифы 2 × 2 см, но более толстые, чем петрографические, изготавливались только в случае массового содержания конодонтов в породе для получения статистически достоверного материала по возрастной структуре конодонтовых комплексов.

В большинстве же случаев препараты были приготовлены целенаправленно из обнаруженного конодонтового элемента или группировок элементов. При этом небольшой кусочек (3–5 мм) откалывался или отпиливался от плитки или куска кремнестой породы, пришлифовывался вручную до хорошей видимости объекта, приклеивался канадским бальзамом на предметное стекло и был пришлифован вручную с противоположной стороны. Покровные стекла не использовались.

Однако в нескольких кремнистых разрезах удалось обнаружить уровни с конодонтами с сохранившимся фосфатным веществом. Такие кремни были обнаружены в трех разрезах бурубайтальской свиты (гор Котнак, Раковая горка и Баритовый карьер) Юго-Западного Прибалхашья и в ержанской свите Бощекуль-Майкаинской зоны. Конодонты из этих местонахождений были выделены с использованием плавиковой кислоты. Это позволило идентифицировать те конодонты, которые ранее было невозможно определить в породе и, таким образом, получить более полное представление о таксономическом составе конодонтовых комплексов в кремнистых фациях.

КРЕМНИСТО-ТЕРРИГЕННЫЕ И КРЕМНИСТО-ВУЛКАНОГЕННЫЕ КОМПЛЕКСЫ

Кремнистые, кремнисто-вулканогенные и терригенно-кремнистые комплексы присутствуют во многих структурно-формационных зонах Казахстана, где они включены в состав сложно дислоцированных комплексов, сформировавшихся в океанических и окраинных бассейнах, на склонах и у подножий островодужных сооружений, а также в рифтогенных структурах.

Несмотря на то, что конодонтов так же, как лингвид и граптолитов, можно обнаружить и в терригенных отложениях, но только в кремнистых породах они встречаются в массовых количествах, позволяющих относительно легко и точно определять возраст кремней и ассоциирующих с ними вулканитов и обломочных пород.

Однако при общем обилии конодонтов в кремнистых породах, какие-либо детальные биостратиграфические построения долгое время были невозможны, так как при обычно относительно хорошей обнаженности кремнистые отложения исключительно редко формируют непрерывные протяженные разрезы. Чаще всего кремни обнажаются в элювиальных высыпках небольшой мощности, что позволяет определить таксономический состав конодонтовых комплексов и возраст отложений в конкретной точке. Преследование последовательных конодонтовых зон и определение их мощности при такой сохранности разрезов невозможно [Курковская, 1985]. Кроме того, для фрагментов непрерывных кремнистых последовательностей, образующих положительные формы рельефа, часто характерно сильное вторичное окремнение, разрушающее находящиеся в кремнях конодонтовые элементы. В таких разрезах конодонты почти всегда отсутствуют. Известен целый ряд таких разрезов, одним из которых является стратотип бурубайтальской свиты на берегу Балхаша южнее пос. Чиганак в Юго-Западном Прибалхашье, охарактеризованный только единичными конодонтами плохой сохранности [Чу-Илийский ... , 1980].

За все годы изучения кремнисто-терригенных и кремнисто-вулканогенных комплексов в Казахстане было найдено только около десятка разрезов (рис. 1), в которых конодонты можно искать послойно, аналогично тому, как изучается эта группа фауны в карбонатных толщах [Дубинина, 2000; Zhilkaidarov, 1998; Tolmacheva et al., 2001, 2004].
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

1 – Бурунтауский район, Юго-Западное Прибалхашье Южного Казахстана (бурубайтальская свита); 2 – Кипчакский (Джалаир-Найманский) район, Северная Бетпак-Дала, Центральный Казахстан (кушекинская свита); 3 – Аксу-Иралдырский район (иралдырская и ишкеольмесская свиты) Северного Казахстана; 4 – Бошкель-Торкыдукский район северо-востока Центрального Казахстана (ерганжская свита); 5 – Акчатауский район, Юго-Западное Предчингизье, Восточный Казахстан (ушкызыльская свита); 6 – Северное Прибалхашье, Центральный Казахстан (казыкская свита).

Наиболее хорошо изучены непрерывные разрезы кремнистых отложений бурубайтальской свиты в Бурунтауском районе Юго-Западного Прибалхашья, акдымской серии в горах Ерментау, ержанской свиты в Бощекуль-Тортукудукском районе, ушкызыльской свиты в Юго-Западном Предчинизье, казыкской свиты в северном Прибалхашье, ишкеольмесской и ирадырской свит в Аксу-Ирадырском районе.

ЕРМЕНТАУ-БУРУЛТАССКАЯ ПОДЗОНА ЕРМЕНТАУ-ЧУИЛИЙСКОЙ ЗОНЫ (ЮЖНЫЙ КАЗАХСТАН)

При выделении этих свит в бурубайтальную свиту были включены слоистые и полосчатые кремни с прослоями кремнистых алевролитов и аргиллитов и кремнеобломочных песчаников [Токмачева и др., 1974]. Майкульская свита в отличие от бурубайтальской считалась более терригенной; к ней были отнесены серовато-зеленые и темно-серые песчаники и алевролиты, контгломераты и ассоциирующие с ними пласты красных, буроватых, зеленых, светло-серых и черных кремней.

В конце 70-х годов в кремнях этих свит были обнаружены конодонты, при этом в бурубайтальской свите были найдены раннеордовикские, а в майкульской среднеордовикские конодонты [Чу-Илийский ... , 1980]. Значительно позднее был изучен непрерывный разрез маломощной толщи кремней, охватывающей интервал от верхнего кембрия до середины среднего ордо-вики, что позволило предположить, что по крайней мере бурубайтальная свита сложена только конденсированными кремнистыми осадками, а терригенные породы в поле развития кремней относятся к майкульской свите [Tolmacheva et al., 2001, 2004]. Некоторые исследователи в майкульскую свиту помимо терригенных пород включают кремни, одновозрастные кремням бурубайтальной свиты [Popov et al., 2009]. В рамках этой концепции майкульская свита была интерпретирована как отложения подводных течений и турбидитов, а бурубайтальная свита как одновозрастные отложения абиссального плато [Popov et al., 2009]. Однако детальное изучение разрезов показало, что майкульская свита согласно пере-крывает бурубайтальную и сложена терригенными породами с линзами и прослоями кремней, содержащих конодонтов позднего дарривилия и раннего сандбия. С геодинамической точки зрения кремнистые бурубайтальная и кремнистые-терригенные породы относятся к отложениям континентального склона и подножия пассивной континентальной окраины [Толмачева и др., 2014].

Строение бурубайтальной свиты, а также характерные для нее конодонтовые комплексы были детально изучены в нескольких разрезах. В 1997 г были описаны два наращивающие друг друга разреза Памятника природы — разрез 9706 и ранее обнаруженный разрез 89101 [Tolmacheva et al., 2001, 2004] (рис. 2, 5). Наиболее полный разрез свиты был позднее вскрыт в разрабатываемом на бариты карьере, расположенном в 20 км на запад от пос. Чиганак. Данные по этому разрезу, как и разрезу Раковой горки, расположенной в непосредственной близости от Памятника природы, и разрезам в горах Котнак приводятся впервые.

Разрез бурубайтальной свиты Баритовый карьер является самым полным и непрерывным разрезом в карьере баритового месторождения Чиганак. Был вскрыт в 2004 г., когда начиналась активная разработка карьера и была зачищена стенка, пер-
пендикулярная основной линзе барита. Позднее разрез был разрушен при расширении карьера. Отдельные небольшие участки последовательности были изучены и опробованы позднее.

В западной стенке карьера обнажена субвертикально залегающая и тектонически ненарушенная кремнистая толща мощностью 110 м (45°07'28" с. ш., 73°44'12" в. д.) (рис. 3, 4). С севера к кремнистой толще в видимом согласном залегании примыкает мощный (20–25 м) пласт светло-серых баритов. В зоне контакта с баритами кремни буро-зеленоватого цвета, глинистые, сильно рассланцованы и филлитизированы. Непосредственно на баритах залегает пласт мощностью 1,5 м, состоящий из переслаивающихся тонкоплитчатых светло-зеленых кремнистых и глинистых сланцев, алевролитов, кремнеобломочных песчаников с прослоями и желваками черных фосфоритов. Все поверхности напластования белого и серого цветов каолинизированы. В 0,5 м от основания на поверхностях кремней найдены элементы *Cordylodus angulatus*. На верхнем ярусе карьера непосредственно на баритах залегают черные кремнеобломочные (фосфоритовые) песчаники с более молодым комплексом конодонтов, в котором доминируют элементы *Paracordylodus gracilis*. В отвалах карьера найдены блоки с ритмичным переслаиванием черных кремней и баритов. Последние образуют прослои мощностью от нескольких миллиметров до десятков сантиметров. В черных полупрозрачных кремнях, которые насыщены микрокристаллическим пиритом, найдены редкие мелкие протосто и параконодонты позднего кембрия и самого раннего ордовика. Вероятно, накопление баритовых залежей в районе карьера было постоянным,
а приостанавливалось и снова возобновлялось на протяжении достаточно длительного времени от позднего кембрия вплоть до начала флюсского времени раннего ордовика.

В 0,5 м выше кремнистых и глинистых сланцев залегают тонкоплитчатые (до 1 см) светло-серые и зеленовато-серые кремни (пачка 2) мощностью 3–4 м, переслаивающиеся с тонкоплитчатыми кремнеобломочными песчаниками и светло-серыми и белыми аргиллитами. Все поверхности коалинизированы. Редкие конодонты встречаются только на поверхностях напластования.

Третья пачка мощностью 6 м сложена тонкоплитчатыми светло-серыми и зеленовато-серыми кремнями с многочисленными прослоями кремнеобломочных песчаников. В верхах пачки появляются прослои бурых кремнистых алевролитов. Все плитки кремней с глинистыми примазками на поверхностях напластования, на которых присутствуют многочисленные конодонты. Вместе с Paracordylodus gracilis здесь встречаются конические элементы Acodus longibasis, Acodus sp. A и др.

Четвертая пачка мощностью 33 м сложена темно-серыми, серыми, белыми алевролитами и серыми и темно-серыми кремнями мощностью 1–10 см полосчатыми кремнями, реже встречаются зеленоватые и красные алевролиты, аргиллиты и песчаники. Заметными становятся следы радиолярий, часто встречаются спикулы губок. Наблюдаются тонкие частые прослои кремнеобломочных песчаников, алевролитов, кремнеобломочных сланцев, часто с белесыми поверхностями напластования, на которых встречаются конодонты. Кремни из нижней части пачки были растворены, из них был выделен богатый таксономически разнообразный комплекс конодонтов с преобладанием элементов Paracordylodus gracilis и Prioniodus honghuaianensis. Из средней части пачки был получен комплекс конодонтов зоны Oepikodus evae флюсского яруса, из верхней — зоны Periodon flabellum / P. macrodentatus дапинского яруса (рис. 4).

Пятая пачка сложена средне- и толстоплитчатыми (5–30 см) темно-серыми кремнями с прослойми сургучных яшм и пропластками алевролитов бурого и зелено-серого цвета. Мощность пачки 4 м.

Для тонко- и среднеплитчатых (5–7 см) темно-серых и черных кремней пачки 6 мощностью 35 м характерны мелкобугристые поверхности напластования с пропластками кремнистого алевролита и аргиллита серого, зеленого и красного цвета. Растворением из нижней части этой пачки был получен таксономически разнообразный комплекс с конодонтами нижней части дарвинского яруса (рис. 4; прил. 1, табл. 1).

В пачке 7 мощностью 9–10 м объединены среднеплитчатые темно-серые и черные кремни, залегающие в прослоях зеленовато-серых кремней и кремнеобломочных аргиллитов, алевролитов, красных песчаников и аргиллитов. Мощность этой пачки 7–8 м.

Пачка 9 представлена темно-коричневыми, темно-красными, темно-серыми до черных кремнистыми аргиллитами, алевролитами, кремнеобломочными песчаниками и ожелезненными и углистыми сильно рассланцованными кремнями. В разрезе карьера верхняя часть этой пачки разрушена, и обнаруживаются только ее нижние 8–10 м.

Перекрывающие отложения (пачка 10), которые отнесены к майкульской свите среднего дапинского яруса, вскрыты на верхних ярусях карьера и надстроиваются описанный разрез. Толща представлена красноцветными и зеленоватыми сланцами, песчаниками, алевролитами, аргиллитами, глинистыми алевролитами, лимонитовыми палевыми и красными песчаниками, аргиллитами с линзами и олистоплаками кремней и кремнеобломочных брекчий. Линзы серых и розовосерых кремней достигают мощности 10 м. В прослоях кремней были выявлены редкие элементы Pygodus serra. Мощность видимой части пачки 10 в карьере составляет около 50 м.

Разрез в баритовом карьере сильно отличается от других изученных местонахождений кремнистых пород особенностями сохранности конодонтов. В отличие от других разрезов массовое количество конодонтов концентрируется здесь на поверхностях напластования отдельных
слоев в глинистом коалинитизированном или глиннистом матриксе. Внутри кремней отдельные элементы конодонтов встречаются значительно реже, но иногда их массовые количества присутствуют в тонких прослоях кремнеобломочного песчаника.

В разрезе карьера все конodontы встречаются в разобошенном состоянии, т. е. здесь полностью отсутствуют природные фекальные группировки элементов, встречающиеся в нижней части бурубайтальной свиты в других разрезах. Вне изученного разреза в стенках и отвалах карьера встречаются блоки массивных серых кремней, которые отсутствуют в основном разрезе, но по содержащимся в них конodontам одновозрастные его стратиграфическому интервалу. Конодонты в них равномерно и хаотически распределены в прозрачной породе, тогда как плоскости напластования остаются практически пустыми. Такая ярко выраженная латеральная неоднородность, как в типах кремней, так и характере накопления конодонтов в карьере связана с близостью баритового карьера и прослеживание их распространения проводилось путем просматривания плиток кремней под бинокуляром. Конодонты были выделены из проб с 20, 28, 30, 40 и 60 м разреза. Ряд промежуточных проб, взятых с 4, 5, 27 и 45 м оказались непроизведенными. Элементы конодонтов встречаются значительно реже, но иногда их массовые количества присутствуют в тонких прослоях кремнеобломочного песчаника.

Изучение разреза показало, что толша мощностью 110 м охватывает непрерывную последовательность конодонтовых зон стратиграфического интервала от зоны Cordyloodus angulatus верхней части тренадакского яруса нижнего ордовика до зоны Pygodus serra середины даррифского яруса среднего ордовика.

Разрезы бурубайтальной свиты Памятник природы. Разрезы 89101 и 9706 расположены в 26 км на юго-восток от Баритового карьера и в 5 км к западу от берега оз. Балхаш (рис. 3). Залегающая практический вертикально толща кремней здесь охаживает в поперечном логе субширотной гряды, сложенной преимущественно кремнитными породами бурубайтальной свиты. В целом разрез охватывает стратиграфический интервал от верхнего кембрия до зоны Pygodus serra среднего ордовика, но в нем из-за скрытого несогласия выпадают верхний флошский и дапинский ярусы. Кроме того, верхнекембрийская и тренадакская часть разреза сильно перекристаллизованна и практически не содержитконodontов. В ней встречаются только отдельные редкие конические элементы, не позволяющие охарактеризовать фауну этого стратиграфического интервала. В связи с этим нижняя часть толщи была описана и изучена в этой же гряде, но в 300 м на восток в разрезе 89101, который содержит значительно больше конodontов в меньшей степени окварцован.

Разрез 89101 (45°02′11″ с. ш., 73°55′40,1″ в. д.) общей мощностью 58 м расположен в нижней части гряды по хорошо обнаженному поперечному логу. Разрез был обнаружен и изучен в 1989 г. [Popov, Tolmacheva, 1995; Tolmacheva et al., 2001]. В 2010 г. его палеонтологическая характеристика была дополнена новыми данными.

В основании гряды в отдельных блоках, тектоносческих разобошенных с основным разрезом, находитя высокая полупрозрачных черных и темно-серых кремней (пачка 1) с большим количеством распыленного органического материала и мелких прото- и параконодонтов, которые часто сформированы в кластеры. Элементы эуконодонтов не встречены.

Выше по склону гряды, через зону дробления, обнаруживается пачка 2 (с 0 по 6 м) тонкоплитчатых и слоистых в кремнях, преимущественно сургучной или темно-кремской окраски, непрозрачных, с очень редкими прослоями полупрозрачных темно-черных, розовых и желтоватых разностей (рис. 6). Сургучные яшмы образуют более мощные пласты, в центральной части которых наблюдается прослои черных углистых фтанитов. В полупрозрачных разностях нижней части пачки встречается много мелких параконодонтов,
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Рис. 5. Схема геологического строения участка разрезов Раковая горка (от т. н. 73 до т. н. 73-3) и Памятник природы (разрезы 89101 и 9706) (по данным А. В. Рязанцева, О. И. Никитиной и автора)

1 – майкульская свита, кремнеобломочные конгломерато-брекчи и песчаники с олистофлаками кремней, полимиктовые песчаники, туффиты; 2 – бурубайтальская свита, кремни, фтаниты, яшмы, кремнеобломочные породы; 3 – структурные линии, маркирующие границы разновозрастных пачек; 4 – тектонические контакты; 5 – элементы залегания; 6 – изученные разрезы

Рис. 6. Разрез бурубайтальской свиты Памятник природы — 89101

1 – белые и светло-непрозрачные кремни; 2 – красные непрозрачные кремни и яшмы; 3 – переслаивание черных углистых и белых кремней; 4 – красные прозрачные и полупрозрачные кремни; 5 – серые и белые полупрозрачные кремни; 6 – черные кремни
в том числе и группированных в кластеры, и Eoconodontus notchpeakensis.

Пачка 3 (от 6 до 13 м) объединяет кремни, сходные с нижележащей пачкой, но с преобладанием тонкослоистых розовых полупрозрачных разностей. Конодонты много почти во всех пластах этой части разреза. Помимо параконодонтов и E. notchpeakensis в средней части пачки появляются элементы видов Cordylodus andresi и Cordylodus proavus. В верхах обнаружены относительно многочисленные Cordylodus lindstromi.

Темно-красные, глинистые, тонкоплитчатые с алевритистыми поверхностями напластования кремни выделены в пачку 4 (от 13 до 27 м). Так как эта пачка сложена непрозрачными кремнями, конодонты в ней удалось обнаружить только на нескольких стратиграфических уровнях. В том числе здесь был найден единственный экземпляр Hirsutodontus sp.

Пачка 5 (от 27 до 33 м) сложена желтовато-серыми, розовыми тонкослоистыми кремнями с глинистыми поверхностями напластования. По всему объему пачки встречается большое количество мелких элементов Decoriconus peselephantis s.l. и более редкие Cordylodus angulatus. Пачка образует уступ в русле лога, а ее верхняя часть бронзируется из массивным пластом красных непрозрачных и сильно окварцованных яхм.

Завершает разрез пачка 6 (от 3 до 10 м), сложенная моющими относительно монотонными среднеплитчатыми серо-розовыми, серыми и светло-серыми кремнями. Некоторые прослои более глинистые и относительно непрозрачные, тогда как часть кремней полупрозрачная с редкими коническими конодонтами, среди которых при этом исключительно многочисленны. На 1 см² поверхности породы приходится не менее десятка элементов, все из которых находятся на разных стадиях роста. Обилие ювенильных форм конодонтов на этом стратиграфическом уровне, а также относительно большое количество группировок элементов (фекальных пеллет) свидетельствуют об отсутствии сортировки осадка, а значит о приближении данного тафоценоза к палеопопуляции.

Разрез 9706 (45°02'11" с. ш., 73°56'273" в. д.) (рис. 7) начинается с толщи тонко- и среднеплитчатых (от 5 мм до 10—15 см) кремней и яхм контрастно-полосчатых от светло-серых, темно-серых и черных до розовых и ярко красных с тонкими прослоями алевролитов и кремнистых сланцев (пачка 1 от —40 до —13 м). Кремни вне зависимости от цвета — прозрачные и полупрозрачные с редкими конодонтами и раздробленными створками карикодонт, многочисленными на некоторых уровнях разреза. В основном встречаются прото- и параконодонты и только в верхах пачки появляются конуса неопределенных в теле породы эуконодонтов.

Пачка 2 (от —13 до —6 м) сложена тонкоплитчатыми темно-серыми до белых кремнями с признаками кремнистых алевролитов по плоскостям напластования. Конодонты исключительно редки; среди параконодонтов и конических эуконодонтов определены элементы Drepanodus arcuatus. Мощность пачки 4 м.

Пачка 3 мощностью около 25 м (от —6 до 18 м) сложена переслаиванием красных, желтовато-серых и розовых кремней, от тонко- до толстоплитчатых, с гладкими, глинистыми поверхностями напластования. Во всех слоях встречаются конодонты, послойный отбор которых выявил последовательность нескольких конодонтовых зон, включая самую нижнюю часть зоны Oepikodus evae, распознаваемую по появлению номинального таксона в верхнем слое этой пачки. Помимо разобщенных конодонтовых элементов часто встречаются элементы видов Eoconodontus notchieakensis в средней части пачки и E. notchieakensis, распознаваемую по появлению номинального таксона в верхнем слое этой пачки.

Рис. 7. Разрез бурбайтальской свиты Памятник природы — 9706

1 — алевролиты, песчаники с глыбами кремней (майкульская свита); 2 — красные кремни с неровными поверхностями напластования; 3 — красные алевролиты и аргиллиты; 4 — кремнеобломочная брекчия; 5 — красные прозрачные и полупрозрачные кремни; 6 — серые и желтые полупрозрачные кремни; 7 — красные непрозрачные кремни; 8 — переслаивание черных углистых и белых кремней; 9 — черные полупрозрачные кремни
встречаются и их групировки фекальной природы, а также раздробленные створки кариякринид. В серых кремнях были обнаружены фрагменты рабдоплеурид (*Rhabdopleurida*).

Пачка 4 мощностью 10 м (от 18 до 28 м) сложена светло- и темно-красными до вишневых, слоистыми, средне- и толстоплитчатыми кремнями. Плитки кремней разделяются тонкими прослоями (до 0,5 см) кремнистых алевролитов. Кремни содержат таксономически разнообразный комплекс конodontов, в котором доминирующим видом является *Periodon macrodentatus*, элементы которого образуют до 80% всего комплекса. Кроме него присутствуют элементы *Pariostodus horridus*. Таким образом, в разрезе не представлены отложения верхней части флоско-дапинского яруса. При этом явный тектоно-tektonический контакт или седиментационный перерыв в разрезе отсутствует, параллельно залегающие хорошо обнаженные слои разделены только трехсантиметровым задернованным интервалом.

Пачка 5 (от 28 до 49 м) сложена темно-красными, местами кирпичными разноплитчатыми глинистыми кремнями с неровными волнистыми и бугорчатыми поверхностями напластования. В нижней части пачки находится мощный прослой (35 см) кремнеобломочных брекчий с кремнисто-глинистым цементом. Ярко выраженная бугорчатость поверхности напластования, вероятно, вызвана перемещением осадка при отложении воды из захороненных нежелезающих слоев. Вертикальные трубчатые структуры подчеркиваются глинистым материалом, который с поверхности напластования прослоев проникает в их внутренние части. Конодонты в этой деформированной части разреза редки и плохо обнаруживаются из-за слабой прозрачности кремней.

Пачка 6 (от 49 до 78 м) объединяет красные и серые разноплитчатые кремни с относительно ровными поверхностями напластования. В этом интервале разреза кремни преимущественно глинистые непрозрачные, только с редкими полупрозрачными прослоями. Конодонты многочисленны, но только на нескольких стратиграфических уровнях в нижней части пачки.

Серые кремнистые алевролиты и аргиллиты с линзами и глыбами серых полупрозрачных кремней относятся к вышележащей майкульской свите, которая в этом разрезе перекрывает бурубайтальскую свиту с тектоно-tektonическим контактом. В глыбах конодонты исключительно редки; встречаются только редкие элементы *Periodon aculeatus*.

В целом кремнистый разрез бурубайтальской свиты мощностью 120 м охватывает интервал от верхнего кембрия до середины среднего ордовика (дапинский ярус, зона *Periodon aculeatus*).

Терригенные породы появляются и начинают преобладать в изученном разрезе примерно на том же стратиграфическом уровне, что и в разрезе баритового карьера. Мощность конодонтовых зон в обоих разрезах, находящихся на расстоянии примерно 20 км, сопоставимы.

Однако в отличие от разреза в баритовом карьере на разрезе Памятник природы алевролиты и аргиллиты, переслаивающие кремни, сильно окремнены и преобразованы в глинисто-кремнистые корки на поверхностях напластования кремней. О вторичном окремнении толщи свидетельствует и плохая сохранность конodontов, которые присутствуют только в виде отпечатков на поверхностях напластования и пустотелых элементов в породе. Поскольку конодонты из данного разреза было невозможно выделить из породы, они изучались только в сколах кремней и шлифах [Tolmacheva et al., 2004], при этом уверенно документировались только доминирующие и часто встречающиеся виды. Кроме того, данный разрез принципиально отличается от баритового карьера тем, что здесь достаточно многочисленны природные группировки конодонтовых элементов в интервале от –6 до 16 м разреза. В баритовом карьере все конодонтовые элементы находятся в разобщённом состоянии.

Разрез бурубайтальской свиты Раковая горка. Находится на вершине небольшого холма, расположенного 150 м севернее гряды с разрезами Памятник природы, и отделенного от неё тектоно-tektonическим контактом. Выходы кремней здесь были обнаружены недавно, когда поисковой камнедобывающей бригадой была вскрыта баритовая линза и обнажены её соотношения с основной кремнистой толщей. В непрерывной последовательности здесь прослеживается только верхняя флоско-дапинская часть разреза, тогда как отложения тремадокского яруса сильно дислоцированы и плохо обнажены. Биостратиграфическая последовательность конodontов в нижней части разреза устанавливается только по высотам характерных кремней.

Самая нижняя часть разреза (пачка 1) сложена на черных и темно-серыми полупрозрачными кремнями с большим количеством мелких прого- и параконодонтовых элементов. К пачке 2 отнесены желтые и розоватые полупрозрачные кремни с многочисленными параконодонтовыми и простыми эуконодонтовыми элементами, среди которых хорошо распознаются только *Decoriconus peselephantis* s.l. Здесь же встречается высыпка слоистых кремней с тонким переслаиванием (от 0,5 до 2–3 см) углисто-черных непрозрачных прослоев и серых или желтовато-серых полупрозрачных разностей. В черных прослоях в большом количе-
В биостратиграфии и биогеографии конодонтов ордовика западной части Центрально-Азиатского складчатого пояса встречаются окремненные конусы свернутых створок карикаридид, которые и дали название этому разрезу (прил. 3, рис. 4). В желтых и серых прослоях встречаются редкие параконодонты и элементы *Decoriconus peselephantis* s.l.

Сходные по разновидностям кремней высыпки и небольшие по 20–50 см коренные выходы желтовато-серых и полосчатых черно-серых разностей отнесены к пачке 3. Во фтанитах, которые преобладают в этой пачке, встречаются многочисленные граптолиты, в темно-серых кремнях — остраокиды или карикаридиды. Интересно, что вместе в одних и тех же слоях кремней обе группы членистоногих не встречаются. Светлые, полупрозрачные кремни в пределах данной пачки содержат конодонтов двух стратиграфических интервалов. Это комплекс зоны *Acodus longibasis* с видом-индексом зоны, с элементами *Paracordylodus gracilis, Drepanodus arcuatus* и *Acodus longibasis*. Вместе с этими видами встречаются карикаридиды и остраокиды. В высыпках выше по разрезу встречаются граптолиты рода *Didymograptus* и редкие *Paracordylodus gracilis, Drepanodus arcuatus* и *Paroistodus proteus* (рис. 8). Флосский возраст этих кремней подтверждается только граптолитами.

Выше, практически вплотную к коренным выходам описанной пачки, примыкает линза барита мощностью 35 см, которая по ходу канавы через два метра выклинивается. Линза с тектоническим контактом согласно перекрывается фрагментом (пачка 4) непрерывного разреза кремней мощностью

Рис. 8. Разрез бурабайтальской свиты Раковая горка

1 — серые и красные кремни; 2 — переслаивание черных углистых и желтых кремней; 3 — желтые и розовые полупрозрачные кремни; 4 — кремнеобломочные песчаники; 5 — черные полупрозрачные и непрозрачные кремни; 6 — барит
16 м, который сложен серыми, в верхней части разреза красновато-серыми полупрозрачными кремнями с прослоями кремнеобломочного песчаника (рис. 8). Конодонты во всем интервале пачки относительно многочисленны; в нижней части преобладают элементы Oepikodus evae, в верхней Periodon flabellum. В самых верхах появляются Periodon macrodentatus, Spinodus spinatus и др. (рис. 8). В нижней части интервала обнаружены слои кремнистого песчаника, роль песчаников в котором выполняют конодонты (прил. 3, рис. 5, A, B). В этих слоях мощностью от 0,2 до 3 см наблюдается градационная слоистость, выраженная в сортировке конодонтов по размеру и уменьшении насыщенности конодонтами кремнистого матрикса в верхних частях песчаниковых прослоев. Конодонтовые элементы в песчанике хаотически ориентированы, но для них характерна преимущественно хорошая сохранность, что возможно свидетельствует о единовременном и быстром переотложении на незначительные расстояния.

Все конодонтовые элементы как в песчанике, так и в вышележащих кремнях сохранили свой фосфатный материал, что дало возможность их выделить из породы. Однако полный комплекс (12 видов) удалось получить только из слоя песчаника; в вышележащих отложениях конодонты (12 видов) удалось получить только из слоя песчаника, роль песчаников в котором выполняют конодонты (прил. 3, рис. 6). Конодонты в этих слоях мощностью от 0,2 до 3 см наблюдается градационная слоистость, выраженная в сортировке конодонтов по размеру и уменьшении насыщенности конодонтами кремнистого матрикса в верхних частях песчаниковых прослоев. Конодонтовые элементы в песчанике хаотически ориентированы, но для них характерна преимущественно хорошая сохранность, что возможно свидетельствует о единовременном и быстром переотложении на незначительные расстояния.

В целом в непрерывном интервале разреза пачки 4 установлена последовательность конодонтовых зон от верхней части зоны Oepikodus evae до зоны Paroistodus horridus основания дарвиновского яруса. Последнее определяется здесь появлением Ansellia jemtlandica и Fahraeusodus marathonensis. В разрезе баритового карьера для окончания в сортировке конодонтов по размеру и уменьшении насыщенности конодонтами кремнистого матрикса в верхних частях песчаниковых прослоев. Конодонтовые элементы в песчанике хаотически ориентированы, но для них характерна преимущественно хорошая сохранность, что возможно свидетельствует о единовременном и быстром переотложении на незначительные расстояния.

В целом в непрерывном интервале разреза пачки 4 установлена последовательность конодонтовых зон от верхней части зоны Oepikodus evae до зоны Paroistodus horridus основания дарвиновского яруса. Последнее определяется здесь появлением Ansellia jemtlandica и Fahraeusodus marathonensis. В разрезе баритового карьера для окончания в сортировке конодонтов по размеру и уменьшении насыщенности конодонтами кремнистого матрикса в верхних частях песчаниковых прослоев. Конодонтовые элементы в песчанике хаотически ориентированы, но для них характерна преимущество хорошая сохранность, что является признаком равномерного накопления биогенного кремнистого осадка в это время.

Разрезы бурубайтальной свиты гор Котнак. Горы Котнак, в строении которых принимают участие кремнистые отложения бурубайтальной свиты, расположены на западе Бурунтауского района в Северной Бетпак-Дале. Геологическому строению этого участка было посвящено много исследований [Маркова, 1961; Недовизин, 1966] (рис. 9), но конодонты здесь были найдены и изучены только недавно.

Отложения бурубайтальной свиты в горах Котнак сильно дислоцированы, в непрерывных последовательностях обнаружены только небольшие разрезы по 10–15 м. Нижняя часть бурубайтальной свиты хорошо обнажена на юго-западном склоне и вершине невысо-кой субширотной гряды. На склоне гряды толща кремней залегает практически вертикально, на вершине она выполняется и формирует мелкие складки.

В примыкающей к юго-западному склону гряды долины обнажаются темно-серые до черных кремни, как правило, полупрозрачные, местами глинистые с многочисленными органическими остатками, в том числе фрагментами створок карикоарилид, обрывками бактериальных матов, мелких прото- и параконодонтов и разнообразных фекальных пеллет, включая пеллеты из конодонтовых элементов. Непрерывный разрез бурубайтальной свиты мощностью 28 м начинается у подножия гряды.

Нижняя пачка (пачка 1) от 0 до 7 м сложена слоистыми (слои по 2–5 см) тонкopolитчатыми кремнями с неритмичным чередованием углистых черных и красных кремней, как правило, полупрозрачных, черных фтанитов и серых до белых полупрозрачных кремней (прил. 3, рис. 6). Кремни содержат органические остатки, в основном фрагменты карикоарилид, однако конодонты встречаются исключительно редко. Найдены только единичные верхнекембрийские прото- и параконодонтовые элементы.

Пачка 2 объединяет 15-метровую последовательность из конодонтовых зон от 7 до 12 м сложена серыми, темно-серыми и розовато-серыми полупрозрачными кремнями. В верхней части пачки появляются и начинают преобладать красноцветные разности. В центральной части пачки присутствует маломощный (1,2 м) участок переслаивания белых кремней, конодонты встречаются исключительно редко. Найдены несколько экземпляров Eoconodontus notchpeaks. В пачку 3 (от 23 до 28 м разреза) включены черные и темно-серые средне- и тонкopolитчатые кремни с тонкими прослоями красных и бурых кремнистых аллевролитов и аргиллитов.

Глиннистость кремней меняется от полнозернистых темно-серых кремней до полупрозрачных черных и серых. Помимо фрагментов карикоарилид и параконодонтовых элементов встречаются редкие элементы Cordylodus proaures, Cordylodus angulatus и Decoriconus peseleplants s.l. (рис. 10). Более молодые отложения бурубайтальной свиты были изучены в 5 км на север в гряде, где свита сильно дислоцирована и обнажается в субвертикально залегающих пластинках с многочисленными тектоноядными контактами. Обнаружены здесь относительно плохая, кремнистая толща не прослеживается в непрерывной последовательности, разрез составлен по высыпкам.
Рис. 9. Схема геологического строения района гор Кутак (А) и участка разреза бурубайтальской свиты (Б). Контуром показано положение детального участка

Б: 1 – кайнозойские отложения; 2 – вулканогенные отложения девона; 3 – терригенная толща, аркозовые и кремнеобломочные песчаники, алевролиты, гравелито- и конгломератобреекчи с обломками кремней и известняков; 4 – ушабыльская свита, алевролиты, песчаники, кремнеобломочные гравелито-брекчи; 5–10 – бурубайтальская свита: 5 – пачка 5, зеленые алевролиты; 6 – пачка 4, зеленые кремни и кремнистые алевролиты; 7 – пачка 3, желтые, белые, серые, черные, красные кремни и красные алевролиты; 8 – пачка 2, желтые, серые и черные кремни, 9 – пачка 1, желтые алевролиты и аргиллиты, 10 – черные кремни; 11 – шопшокинская свита, кварцитовидные песчаники, базальты; 12 – дарбазинская свита, известняки, доломиты, кварцевые песчаники; 13 – разрывные нарушения; 14 – расположение разреза (пачки 1–3).
и обнаженным участкам небольшой протяженности.

Кремни на протяжении всего изученного участка очень сходны по своим литологическим особенностям, они преимущественно среднеплитчатые (5–10 см) светло окрашены, желтовато-серые, серые с прослоями розового и красного цвета, слабоглинистые полупрозрачные. Конодонты удалось выделить растворением из трех проб: пробы ТТ10-7 зоны *Cordylodus angulatus* верхнего тренадака, пробы О5133 и О5131 зоны *Acodus longibasis* верхней части тренадакского — нижней части флоского яруса (рис. 10).

В целом разрез в горах Котнак отличается от других, более восточных разрезов бурубайтальской свиты большим количеством тонких прослоев кремнеобломочного песчаника, где вместе с обломками кремней присутствуют сортированные конодонтовые элементы. Всего в разрезе условной мощности 45 м выделяется последовательность конодонтовых зон от *Acodus longibasis* до *Oepikodus evae*.

Кипчакский (Джалайр-Найманский) Район Ерментау-Чуилийской зоны (Юго-Западный Казахстан)

Разрез кушекинской свиты Голубая гряда. Относительно протяженный кремнистый разрез в районе низких сопок, протягивающихся в северо-западном направлении, назван Голубой грядой за их общий голубоватый тон. Впервые был описан Б. М. Келлером [Келлер, Лисогор, 1954]. Всю совокупность отложений, слагающих сопки, включая кварцевые песчаники, углисто-кремнистые алевролиты, аргиллиты и фтаниты, была выделена им в кушекинскую свиту, возраст которой определен как аренигский – лланвирнский на нижней части флоского яруса (рис. 10).

В кремнях встречаются граптолиты и конодонты. Ранее они были собраны только в нижней части свиты, до тонкотерригенных пород в средней части [Дубинина и др., 1996а]. Первоначально конодонты обнаружены также и в верхах пачки. Всего в разрезе верхней подсвиты выделяется 5 пачек, для которых в целом выдерживается грубая ритмичность от песчаников в нижней части пачек, до тонкотерригенных пород в средней части и кремнистых в верхней (рис. 12). Нижняя часть пачки 1 сложена светло-серыми до темно-серыми, углисто-кремнистыми алевролитами и аргиллитами (рис. 12). Количество кремней возрастает вверх по разрезу, вершина которого сложена почти исключительно кремнистыми породами. В разрезе на нескольких стратиграфических уровнях встречаются граптолиты, конодонты, брахиоподы (лингуляты), мелкие членостоногие.

Величина кремнистого разреза в горах Котнак отличается от других, более восточных разрезов бурубайтальской свиты большим количеством тонких прослоев кремнеобломочного песчаника, где вместе с обломками кремней присутствуют сортированные конодонтовые элементы. Всего в разрезе условной мощности 45 м выделяется последовательность конодонтовых зон от *Acodus longibasis* до *Oepikodus evae*.

Рис. 10. Разрез бурубайтальской свиты в горах Котнак
1 — кремнеобломочные песчаники с конодонтами; 2 — серые, желтые и красные полупрозрачные кремни; 3 — серые полупрозрачные кремни; 4 — красные прозрачные и полупрозрачные кремни; 5 — черные полупрозрачные кремни; 6 — переслаивание черных углистой и белых кремней
Т. Ю. Толмачева

24

глинисто-кремнистыми и кремнистыми алевропелитами, темно-серыми кремнеобломочными алевропесчаниками, глинисто-кремнистыми аргиллитами с радиоляриями и спикулами губок. Верхняя часть сложена полупрозрачными темно-серыми и черными фтанитами, углисто-кремнистыми алевролитами с прослоями белесых слюдисто-кремнистых аргиллитов. Конодонты встречаются в большом количестве только в полупрозрачных кремнистых алевролитах.

Пачка 3 аналогична двум нижележащим и представлена выдержаннием мощным (50 м) ритмом от терригенных к кремнистым слоям. Во фтанитах найдены многочисленные конодонты и граптолиты, в том числе встречаются и группировки элементов.

Рис. 11. Геологическая схема района Голубая Гряда по [Чу-Илийский ..., 1979]
1, 2 – алгабасская свита среднего ордовика; 3 – порфириты и туфы савидской свиты среднего ордовика; 4 – караанская свита среднего ордовика (сланцы, алевролиты, яшмы); 5, 6 – нижний ордовик (5 – песчаники, 6 – кварц-полевошпатовые песчаники); 7, 8 – кушекинская свита (7 – преимущественно аргиллиты, 8 – преимущественно кремнистые алевролиты); 9 – дайки; 10 – элементы залегания; 11 – местонахождения граптолитов; 12 – тектоноические нарушения; 13 – местонахождение разреза

Рис. 12. Разрез кушекинской свиты района Голубой гряды и распространение конодонтов
1 – фтаниты; 2 – кремнистые алевролиты и аргиллиты; 3 – аргиллиты; 4 – тонкое переслаивание песчаников и алевролитов; 5 – песчаники; 6 – литокластические туфы; 7 – брекчии
Пачка 4 мощностью 110 м отличается от нижележащих отложений отсутствием общего тренда уменьшения зернистости породы в ее интервале и присутствием в верхней части четко выраженной мелкой ритмичности. Нижняя часть пачки сложена светло-желтыми и розоватыми алевролитами и алевропесчаниками с линзовидными пластами черных фтанитов мощностью до 0,5 м и слоями тонкого переслаивания светло-желтых песчаников с темными тонкослоистыми кремнистыми алевролитами, аргиллитами и алевропелитами с редкими фрагментами граптолитов. В верхней части пачки наблюдается чередование светло-желтых песчаников, гравелито-брекчий, темно-серых аргиллитов, голубоватых углисто-кремнистых алевролитов и темных де черных фтанитов. Всего здесь выделяется 12 выдержанных ритмов мощностью от 1,4 до 7,0 м, каждый из которых начинается желтоватыми песчаниками или алевролитами и завершается фтанитами или тонкими ритмами, состоящими из чередования темных фтанитов и светлых кремнистых аргиллитов (рис. 12). Эти ритмы хорошо выделяются в рельфе по цвету и из-за устойчивости к выветриванию их кремнистых частей (прил. 3, рис. 7).

В подошве пластов фтанитов наблюдается тонкое (до 0,4 м) переслаивание серо-черных несортированных кварц-полевошпатовых мелкозернистых песчаников и литокластических тубов, состоящих из округлых и угловатых обломков светло-серых и темно-серых кремней, кварца и альбита, песчано-песчанитовой размерности, цементированных пепловой основной массой.

Нижняя часть пачки 5 сложена переслаиванием желтых алевролитов, алевропесчаников и голубовато-серых, темных зеленовато-серых и буро-лиловых углистых кремнистых аргиллитов, встречаются тонкие пласты (до 5 см) тонкосложистых фтанитов. Выше залегают пласты голубовато-серых углистых кремнистых аргиллитов, алевролитов с прослоями темно-серых, коричневатых и черных фтанитов (от 3 см до 1,2 м), тонко по- лосчатых и однородных, с глинисто-известковыми стяжениями. В верхней части пачки преобладают глинисто-кремнистые и глинистые сланцы голубовато-серые, буро-зелено-серые, лиловые, с мелкой вкрапленностью окисленного пирита. Мощность пачки 60 м.

Непосредственно выше по разрезу терригенно-кремнистая толща кушкинской свиты пере- крывается караканской свитой, сложенной серыми и коричневатыми глинистыми сланцами с прослоями сургучно-красных глинистых ям.

В целом в пределах изученного интервала кушкинской свиты выделяются несколько ритмов от более грубых терригенных пород через тонкозернистые к кремнистым. Эти циклы наиболее хорошо проявлены в нижней части разреза в и меньшей степени в верхней, где кремнистость разреза несколько увеличивается.

Конодонты в разрезе относительно малочисленны и присутствуют только во фтанитовых прослоях в виде пустотелых отпечатков, вероятно, частично заполненных окислями железа, в связи с чем конодонты приобретают красный цвет. Кроме разоблаченных конодонтов нередко встречаются и группировки конодонтовых элементов. Выявленный в результате изучения разреза таксономический состав комплексов конодонтов насчитывает не более семи видов и, вероятно, является неполным.

В отличие от полностью кремнистой бурубайтальской свиты в кушкинской свите кремни слагают только незначительную часть разреза. Относительно высокое содержание конодонтов в наиболее кремнистых слоях кушкинской свиты указывает на их высокую конденсированность, но формирование фоновых кремнистых биогенных осадков прерывались накоплением терригенных пачек. В результате мощность разреза, охватывающего верхнюю часть зоны Oepikodus evae и нижнюю часть зоны Periodon flabellum / P. macrodentatus, составляет около 300 м, что значительно превышает мощности конденсированной бурубайтальной свиты. Тем не менее это единственный кремнистый разрез в Казахстане, где можно проследить детальное стратиграфическое распределение конодонтов в пограничном интервале нижнего и среднего ордовика.

АКСУ-ИРАДЫРСКИЙ РАЙОН
ЕРМЕНТАУ-ЧУИЛИЙСКОЙ ЗОНЫ
(СЕВЕРНЫЙ КАЗАХСТАН)

Разрезы ирадырской и ишкеольмесской свит. В Аксу-Ирадырском районе кремнистые и кремнисто-базальтовые толщи протягиваются примерно на 250 км в субмеридиональном направлении между Ишкеольмесским докембрийским массивом на западе и Урумбайским районом, где развиты в основном островодужные вулканиты кембрия — нижнего ордовика, на востоке [Дегтярев, Рязанцев, 2007]. В строении Аксу-Ирадырского района участвуют преимущественно кремнистые и кремнисто-базальтовые толщи, расчлененные на три свиты: 1) ишкеольмесскую мощностью до 700 м, сложенную яшмами, фтанитами, кремнями, кремнисто-терригенными и терригенными породами и распространенную на западе зоны, где она слагает узкую полосу
вблизи докембрийских комплексов Ишкеоль-месского массива; 2) сазинскую мощностью бοльше 500 м, образованную афировыми базалтами с прослоями кремнистых алевролитов, туфов, кремней, туфонапластов и туфов основного со-става и распространённой восточнее; 3) ирадыр-скую мощностью до 350 м, сложенную серыми кремнями, фтанитами, яшмами, зелеными крем-нисто-терригенными и терригенными породами и развитую в восточной части района. В начале 80-х годов ХХ в. во всех трех свитах были собра-ны конодонты Paracordylodus gracilis, а в ирадыр-ской свите также и Oepikodus evae, на основании которых эти толщи были отнесены к различным частям раннего арена [Борисенок, 1985].

Кремнистые разрезы ишкеольмесской и ира-дырской свит были изучены в северной части ре-гиона — в окрестностях гор Борлыколь, Коныршокы и пос. Коксал, расположенных в 5—15 км юго-восточнее г. Степногорск (рис. 13) [Толма-чева, Дегтярёв, 2012]. Кремнистые толщи здесь участвуют в строении смятых в складки текто-нических пластин, надвинутых в целом на юго- запад.

Наиболее низкое положение в структуре зани-мает пластина, сложенная толщей чередующихся желтых и серых кремней, бурых и красных яшм с горизонтами кварцевых песчанников. Эти поро-ды, ранее относившиеся к нижней части разреза ишкеольмесской свиты, тектонически перекры-вают докембрийские комплексы Ишкеольмес-ского массива. Их мощность составляет около 20 м. В желтых кремнях этой толщи в 1 км к вос-току от пос. Коксал (т. н. 122) собраны элементы Paracordylodus gracilis.

Более высокое положение в структуре занима-ет пластина, сложенная исключительно кремни-стыми породами, которую относили к верхам раз-реза ишкеольмесской свиты. Кремнистые породы этой пластины моноклинно падают на восток под углами 45–50° и слагают протяжённые гряды северо-западной троения в 2 км юго-за-паднее гор Борлыколь. Низы разреза образованы чередующимися черными, серыми и зеленоваты-ми плитчатыми кремнями и красными яшмами, в которых собраны конодонты зоны Eoconodonts notchpeakensis позднего кембрия (т. н. 96, 97, 101, 102). Мощность верхнекембрийской части разре-за составляет около 30 м. Более высокая часть разреза отделена разломом и сложена чередую-щимися серыми и черными кремнями и красны-ми яшмами, в которых собраны конодонты от зоны Rossodus верхней части третадка до ниж-ней части зоны Prioniodus elegans низов флюсского яруса (т. н. 94, 95) (рис. 14). Мощность нижнеор-довикской части разреза около 25 м.

Самостоятельная пластина образована толщей афировых базалтов, содержащих тела долеритов и габбро-долеритов. На изученном участке эти породы обнажены слабо, они тектонически пе-рекрываются пластины кремней ирадырской свиты и сопоставляются с сазинской свитой [Бо-рисенок, 1985].

Смятые в складки тектонические пластини с фрагментами разреза ирадырской свиты за-нимают северо-восточную часть изученного участка. Нижняя пластина слагает юго-западное подножие гор Борлыколь и образована желтыми и сероватыми кремнями, переслаивающимися с красными слоистыми яшмами, в которых собра-ны конодонты зоны Pariostodus proteus (т. н. 117). Мощность этих пород около 10–20 м, они над-винуты на базальты сазинской свиты и перекры-ваются верхней пластией, породы которой сла-гают горы Борлыколь и Коныршокы, а также их северо-восточные склоны. В разрезе верхней пла-стины выделены две толщи: толща бельных и розо-ватых кремней с прослоями тонкослоистых серых и черных кремней (мощность около 10–20 м), в которых собраны конодонты зоны Cordylodus angulatus и Pariostodus proteus (т. н. 98, 99, 116, 118, 119, 120, 121), и толща красных слоистых яш-м с прослоями серых и линзами желтых кремней мощностью около 30–50 м с конодонтами зоны Pariostodus proteus (т. н. 100). Последняя толща слагает также и нижнюю пластию.

В результате был установлен широкий (от верхнего кембрия до середины флюсского яруса нижнего ордовика) возрастной диапазон кремени-стых пород Аксу-Ирадырского района (рис. 14).

Также установлено, что возрастные интерва-лы ишкеольмесской и ирадырской свит почти совпадают, за исключением того, что в ирадыр-ской свите не были найдены конодонты позднего кембрия. Кроме преобладания бельных и светло-серых кремней в одной из толщ ирадырской сви-ты и темноцветных и красноцветных разностей в одновозрастных породах ишкеольмесской сви-ты, никакие другие отличия в характере кремни-стых отложений не наблюдались. Так, кремни в обеих свитах преимущественно тонкослоистые, прозрачные с небольшой присмесь глинистого материала на поверхностях напластования.

Конодонты в большом количестве были об-наружены только в относительно не окварцирован-ных черных, серых и красных кремнях, которые слагают небольшие по мощности последователь-ности в сильно дислоцированной и измененной кремнистой толще. Изучение конодонтов было возможно только в шлифах и тонких спилах породы, так как первичный фосфатный мате-риал конодонтовых элементов не сохранился.
Рис. 13. Схема геологического строения окрестностей гор Борлыколь и Конырышкы в северной части Ирадырской зоны, по [Толмачева, Дегтярёв, 2012]

1 — кайнозойские отложения; 2 — средне-верхнеордовикские терригенные толщи; 3—7 — комплексы Ирадырской зоны: 3 — кремнисто-терригенные толщи нижнего ордовика, 4—6 — кремнистые породы Ишкеольмесской и ирадырской свит верхнего кембрия — нижнего ордовика; 4 — желтые кремни и красные яшмы ирадырской свиты; 5 — белые, черные, серые кремни ишкеольмесской свиты, 6 — белые, серые, желтые кремни и красные яшмы ишкеольмесской свиты; 7 — базальты и долериты сазинской свиты; 8 — базальты, андезибазальты и андезиты верхнего кембрия Урумбайской зоны; 9 — докембрийские метаморфические комплексы Ишкеольмесского массива; 10 — линии простирания в кремнистых толщах; 11 — разрывные нарушения: a — границы тектонических пластин, b — прочие, c — предполагаемые границы под кайнозойскими отложениями; 12 — точки сборов конодонтов
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Таксономическое разнообразие конодонтов достигает 12 видов в верхах тремадокского и низах флоского ярусов, где конодонты наиболее многочисленны. Комплекс этого возраста представлен в основном видами широкого географического распространения *Paracordylodus gracilis*, *Acodus longibasis*, *Drepanodus arcuatus*, *Decoriconus peselephantis* s.l., *Paroistodus cf. iarallelus*, *Oelandodus elongatus*. В самых верхах появляется *Prioniodus elegans*. Более древние сообщества зон *Cordylodus angulatus* и *Rossodus* включают кроме видов-индексов многочисленные мелкие элементы *Decoriconus peselephantis* s.l. Позднекембрийские конодонты представлены прямым коническими параконодонтами и элементами *Eoconodontus notchpeakensis*. Также в породе встречаются фекальные пеллеты из конодонтовых элементов либо из мельчайших обломков створок пелагических членистоногих.

БОЩЕКУЛЬ-ТОРТКУДУКСКИЙ РАЙОН
(СЕВЕРО-ВОСТОК ЦЕНТРАЛЬНОГО КАЗАХСТАНА)

Разрезы ержанской свиты. В Бошекуль-Торткудукском районе существенно кремнистые отложения отнесены к ержанской свите мощностью от 50 до 300 м, которая с тектоническим контактом перекрывает более древние венд-кембрийские вулканогенные комплексы. Тектонизированный олистостром в основании свиты включает глыбы вышележащих кремней и известняков с верхне-кембрийской фауной [Рязанцев, 2005]. Только
нижняя часть ержанской свиты сложена кремнистыми породами, в том числе красноцветными кремнями; верхняя содержит сероцветные песчаники и алевролиты. На некоторых стратиграфических уровнях заметна значительная примесь тугоплавкого материала среднего и кислого состава. Ержанская свита перекрывает еркебидаикской свитой, в песчаниках и алевролитах которой собраны граптолиты среднего кардо-карако-караусского яруса [Никитин, 1972].

Конодонты к началу 90-х годов были найдены в нескольких разрезах ержанской свиты, в том числе и на восточном склоне горы Семизбугу. Здесь в кремнистых алевролитах были собраны конодонты Pygodus serra, Periodon aculeatus, Protopanderodus sp., Drepanodus arcuatus верхней части дарривильского яруса (определения Л. А. Курковской) [Рязанцев, 2005]. Согласно этим находкам свита была отнесена к среднему ордовику, что вошло в последние стратиграфические схемы Казахстана [Решения..., 1991].

В 2007 г. были изучены два разреза ержанской свиты в горах Семизбугу и Коянды (рис. 15). На восточном склоне горы Семизбугу низы разреза сложены красными и вишневыми кремнистыми алевролитами, туффитами, песчаниками, встре-чены редкие прослои светлых кремней. Выше по разрезу количество кремнистых прослоев увеличивается, начинают преобладать красноцветные разности, в том числе переслаивающиеся с белыми и желтыми кремнями. Мощность кремнистой части свиты в данном разрезе не превышает 200–250 м. В верхней части ержанской свиты в разрезе на восточном склоне горы Семизбугу и Коянды (рис. 15) были обнаружены конодонты Pygodus serra и Pygodus anserinus. В верхней части разреза горы Коянды были обнаружены комплексы (пр. ТТ07-13 и ТТ07-14), в которых элементы Pygodus отсутствуют, зато появляются таксоны, характерные для средней и верхней частей сандбийского яруса. Кроме того, был найден М элемент с укороченным передним краем, характерный для вида Periodon grandis. Среди многочисленных S элементов Periodon grandis не распознан, что позволяет идентифицировать этот вид здесь только условно.

Кроме того, у западного подножия горы Семизбугу (рис. 16) в самой верхней части ер-жанской свиты (пр. ТТ07-2, 51°15′36″, 73°40′16″ с. ш., 73°40′28″, 2″ в. д.) были обнаружены элементы позднеордовикских Periodon aculeatus, Scabardella altipes и редкие элементы Pygodus. Конодонты этого возраста были также найдены на севере Башкортостана, в 6 км к юго-востоку от горы Аксак-Коянды. Верхи ержанской свиты здесь сложены серыми и белыми кремнями и кремнистыми туффитами, в которых был обнаружен комплекс конодонтов с количественным преобладанием элементов Periodon grandis.

В комплексе позднеордовикских конодонтов из ержанской свиты доминирует вид Periodon grandis, тогда как Scabardella altipes, Hamarodus europea, а также элементы родов Protopanderodus и Drepanodus встречаются в единичных экземплярах. В одном из изученных местонахождений найден элемент Pygodus anserinus. Возраст комплекса был определен как позднесандбийский по присутствию вида P. anserinus, существующего не позднее верхов сандбийского яруса. В результате этих находок изменен возраст ержанской свиты, ее верхний предел формирования был расширен от верхов дарривильского до низов катийского ярусов (рис. 16).

Надо отметить, что в целом находки позднеордовикских конодонтов в кремнистых породах Казахстана исключительно редки, а их
Рис. 15. Схема геологического строения окрестностей горы Семизбугу, по [Дегтярев, 2012]

Помимо ержанской свиты местонахождения конодонтов верхнего ордовика были обнаружены автором в бассейне р. Балга Юго-Западного Предчингизья в кремнисто-туфогенной толще кызылкаинской серии [Дегтярёв, 1999]. В ее верхней части преобладают кремнистые алевролиты, артгиллиты и песчаники красного и бурого цвета, мощностью до 400 м. Конодонты были найдены в наиболее окремненных и окварцованных разностях, являющихся более прозрачными, чем окружающие породы. Кызылкаинская серия перекрывается нижнесилурийской олистостромовой толщей зеленоцветных песчаников и алевролитов с глыбами и крупными отторженцами кремнистых алевролитов. В одной из глыб был обнаружен такой же комплекс конодонтов, как и в нижележащей кызылкаинской серии [Дегтярёв, 1999; Tolmacheva et al., 2009].
В 2006 г. разрезы кызылкаинской серии были переизучены и существенно пополнена коллекция конодонтов. В составе комплекса определены *Periodon grandis*, *Scabardella altipes*, *Drepanoistodus* sp., *Protopanderodus* sp. и *Pygodus anserinus*. Элементы конодонтов *P. grandis* здесь резко доминируют, составляя до 90% комплекса. *Drepanoistodus* sp. представлен только дрепано-дифформными элементами, а *Pygodus* sp. двумя рагмиформными и одним платформенным элементом.

В целом полученные из разных местонахождений Казахстана списки позднеордовикских конодонтов отличаются единообразием и включают помимо доминирующего *Periodon grandis* только 3–4 дополнительных таксона, идентификация которых не вызывает сомнений. Присутствие частей видов, таких как *Icriodella suierba*, *Distacodus victrix*, *Panderodus gracilis* в кремнистых фациях Казахстана нуждается в проверке.

КАРБОНАТНЫЕ, ТЕРРИГЕННО-КАРБОНАТНЫЕ И КРЕМНИСТО-КАРБОНАТНЫЕ КОМПЛЕКСЫ

В ордовике Центрально-Азиатского пояса достаточно редко встречаются карбонатные толщи, накапливающиеся на протяжении длительного интервала времени. Наиболее полные карбонатные разрезы известны в Атасу-Моинтинском районе (курчиклинская и шундинская свиты позднего дапина – начала сандбия) и в Малом Каратау (нижняя часть шабактинской свиты). Во всех других зонах известны участвуют в строении вулканогенных, терригенных и кремнисто-терригенных комплексов, где они слагают как небольшие пласты и линзы (например, каратаульская и ажкальская свиты Джалаир-Найманского района), так и мощные слои преимущественно биогерменного происхождения, образующие холмы и гряды в современном рельефе (дуланкаринская, андеркенская, бестамакская, акдомбакская, маятасская свиты).

Основная часть известняков, в том числе прослои в вулканогенных и терригенных разрезах, относятся к мелководным карбонатам водорослево-микробиальной природы, характерным для тепловодного палеобассейна Казахстана, который в ордовике находился в приэкваториальной области. Иногда известняки содержат разнообразную и богатую раковинную фауну, в основном трилобитов и брахиопод; в позднем ордовике появляются многочисленные кораллы. Такие карбонатные фации неблагоприятны для изучения конодонтов, так как высокая скорость формирования отложений не позволяет накопиться большому количеству остатков пелагических организмов, с относительно одинаковой скоростью поступающих в осадок на дне бассейна. Обогащение конодонтами быстро накапливающихся карбонатов может быть вызвано только перемывом и сортировкой кластической составляющей осадка. Опыт растворения мелководных массивных известняков показал, что количество конодонтов в них не превышает десятка элементов на килограмм породы, а переотложенные и сортированные разности известняков с конодонтами встречаются редко.

Для разрезов более глубоководных фаций характерны плитчатые известняки и калькарениты, образование которых происходило, в том числе при размыве водорослевых карбонатов. Из таких известняков также не часто удается получить представительные коллекции конодонтов.

Для изучения таксономического состава конодонтовых фаун благоприятны только пелагические карбонаты, сформированные при низких скоростях осадконакопления. Самые богатые комплексы конодонтов были получены из такого рода карбонатных пластов и линз в терригенных и терригенно-кремнистых отложениях.

При опробовании некоторых непрерывных карбонатных разрезов Казахстана (узунбулакская свита) были обнаружены только отдельные слои с относительно большим содержанием конодонтов. Но получить какие-либо продолжительные интервалы распространения конодонтов не удалось. Оказалось, что конодонты относительно многочисленны только в одной или много реже двух-трех точках в пределах стратиграфических интервалов разрезов. Местонахождения конодонтов, откуда удалось получить представительные конодонтовые комплексы, описываются ниже.

ЧИНГИЗ-ТАРБАГАТЯНСКАЯ ЗОНА (ВОСТОЧНЫЙ КАЗАХСТАН)

Терригенно-карбонатные и кремнисто-терригенные толщи на р. Кольденен. Один из наиболее древних комплексов конодонтов ордовикового возраста был выделен из карбонатных прослоев и линз кремнисто-терригенных толщ верхнего кембрия — нижнего ордовика на правом берегу р. Кольденен вблизи устья руч. Копа в центральной части хр. Чингиз (Восточный Казахстан) (рис. 18). Эта толща ранее входила в состав чингизтауской свиты, среднекембрийский (майский) возраст
Рис. 17. Схема расположения изученных местонахождений конодонтов в карбонатных отложениях Казахстана и Северной Киргизии (схема районирования ордовика палеозой Казахстана и Киргизии, по [Решения ..., 1991] (структурно-тектонические зоны см. на рис. 1)

1 – Северный Тянь-Шань (кенташийская свита); 2 – хр. Кендыктас (агалатская свита); 3 – горы Чу-Или (узунбулакская свита); 4 – Северная Бетפק-Дала (караканская свита); 5 – Текелийский район (тасбулакская свита); 6 – хр. Тарбатгаий (кулунбулакская свита); 7 – хр. Чингиз (горы Окпекты, терригенно-карбонатная толща); 8 – хр. Чингиз (р. Копа, кремнисто-терригенная толща); 9 – хр. Чингиз (найманская свита); 10 – хр. Чингиз (бестамакская свита); 11 – хр. Чингиз (маматская свита); 12 – Урумбайский район, Северный Казахстан (вулканогенная толща)
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

которой обосновывался многочисленными трилобитами в мощном слое известняка в основании свиты [Геология СССР, 1972; Решения ..., 1991; Дегтярёв и др., 1999]. Позднее было установлено, что верхняя кремнисто-терригенная часть свиты перекрывает известняки со стратиграфическим несогласием, а ее возраст, определенный по разным группам фауны, в том числе по конодонтам, находится в интервале от верхнего кембрия до среднего ордовика [Дегтярёв и др., 1999]. Конодонты в кремнисто-терригенной толще были обнаружены С. В. Дубининой как в карбонатных, так и кремнистых породах.

Однако коллекции этих конодонтов не сохранились. В начале 2000-х годов в результате новых сборов конодонтов в кремнях и карбонатных линзах в разрезах на берегах р. Колденен и в горах Зербкызыл был уточнен возраст верхней части кремнистых пачек в терригенно-тufогенном разрезе. Среди конодонтов из карбонатных линз в разрезах гор Зербкызыл были определены виды *Rossodus. manitouensis* и *Prioniodus* cf. *P. honghuayanensis* верхней части тремадокского и самых низов флюксского яруса [Tolmacheva et al., 2008] (рис. 19). В кремнях и карбонатных линзах нижней части разреза на правом берегу
Т. Ю. Толмачева

р. Кольденен были найдены конодонты верхнего кембрия и самых низов ордовика.

В целом кремнисто-терригенная толща сложена кремнистыми алевролитами и песчаниками с редкими прослоями кремней и карбонатных линз. В ее основании наблюдается горизонт плоскоблочечной осадочной брекчии (мощностью до 0,2 м), состоящей из слабоокатанных обломков серых пелитоморфных известняков, выше которого залегают зеленые кремни, серо-зеленые известковистые алевролиты, мелкозернистые песчаники с тонкими (до 0,1 м) линзами и прослоями серых известняков (мощность 25—30 м). В кремнях и известняках были найдены конодонты позднего кембрия [Tolmacheva et al., 2008]. Выше по разрезу количество карбонатных прослоев постепенно сокращается, до их полного исчезновения. Общая мощность терригенно-карбонатной пачки не превышает 100 м.

Верхняя часть разреза представлена серо-зелеными, желтыми и черными кремнистыми туфитами, кремнистыми алевролитами и кремнями (рис. 19). В кремнях верхней части наряду с мелкими параконодонтами были собраны редкие элементы эоконодонтов, в том числе Cordylocrus proavus и Variabiloconus? sp. В толще кремнистых алевролитов присутствуют редкие линзы известняков и карбонатные конкреции (т. н. Д10-138, 138/1, 138,2, 48°47'52" с. ш., 79°07'58,7" в. д.), из которых было извлечено около 10 экземпляров

Рис. 19. Схематичные разрезы кремнисто-туфогенной толщи верхнего кембрия и нижнего ордовика на р. Кольденен и в горах Зеркылы, по [Tolmacheva et al., 2006, с изменениями и дополнениями]

1 — алевролиты; 2 — известняки; 3 — песчаники; 4 — карбонатные песчаники; 5 — кремни; 6 — кремнистые алевролиты и аргиллиты; 7 — местонахождения конодонтов; 8 — номера местонахождений
конодонтов. Комплекс представлен паракондонтовыми элементами, фрагментами *Cordylocus*, *Hirsutodonitus* sp. и *Loxodus* sp. Присутствие последнего вида, для которого в раннем ордовике характерно узкое стратиграфическое распространение, ограничивает возраст отложений зоной *Cordylocus angulatus* нижнего тремадока.

Необходимо отметить, что изученные отложения являются единственным в Казахстане местонахождением представителя рода *Loxodus*, которое широко встречаются в Сибири и Северной Америке, включая Канадскую Арктику [Pyle, Barnes, 2002; Ji, Barnes, 1994]. Все остальные виды, например *Hirsutodonitus*, типичны и для кремнистых и карбонатных отложений Казахстана [Дубинина, 2000; T olmacheva et al., 2001].

Изучение конодонтов в кремнисто-терригенных отложениях в районе р. Кольденен и гор Зербкызыл позволило значительно уточнить их стратиграфическое расчленение. Кроме того, установлено, что формирование кремнистых параконодонтовых комплексов в преимущественно терригенных последовательностях этого региона, интерпретируемых как отложения задугового бассейна [T olmacheva et al., 1999], начинается с самой верхней части кембрия [T olmacheva et al., 2001], и продолжается в течение тремадокского времени, но в отличие от кремнистых отложений бурулакской свиты здесь биогенным источником кремнезема были, скорее всего, спикулы губок, а не радиолярии.

Относительно недавно разрез маматской свиты был переизучен, и для подтверждения возраста и биогеографических отличий фауны маматской свиты от фаун других одновозрастных образований региона из отложений свиты впервые выделены и описаны конодонты.

Маматская свита входит в состав вулканогенно-осадочного комплекса, объединяющего верхнекембрийские и нижнеордовикские толщи в центральной части хребта Чингиз (рис. 20). Верхнекембрийские образования (карагутуская свита) представлены эфузивами и туфами андезибазальтов, андезитов, андезидацитов, дацитов и риоидаций и риолитов, содержащимися в магматитах с трилобитами саксского и аксайского ярусов верхнего кембрия. Мощность карагутусской свиты достигает 2000 м [Геология ... , 1962; Самсын и др., 1969; Геология СССР, 1972]. Тремадокские толщи (собственно маматская свита) сложены преимущественно обломочными породами с горизонтом известняков в нижней части разреза. Флюсский ярус (сарышокинская свита) представлен эфузивами и туфами среднего состава, которые вверх по разрезу сменяются туфо-гравийными песчанниками с линзами известняков, содержащими трилобиты. Мощность сарышокинской свиты достигает 500 м [Никитин, 1972].

Изученный участок располагается на обоих берегах левого безымянного притока ручья Карлыбукак в 5 км к восток-юго-востоку от горы Мамат. Здесь вулканогенно-осадочные толщи верхнего кембрия — нижнего ордовика слагают юго-восточную часть антиклинальной складки, ядро которой прорвано гранодиоритами позднего плейстоцена (рис. 20).

В основании видимого разреза обнажены лавы и туфы риолитового состава мощностью до нескольких сот метров, в 5 км к северо-востоку от рассматриваемого участка аналогичные породы содержат линзы известняков с трилобитами саксского ярусов верхнего кембрия [Лялин и др., 1964]. Эфузивы и туфы кислого состава верхнего кембрия перекрывают туфогенно-осадочный маматский свиту, низы разреза которой на разных берегах безымянного ручья несколько отличаются.

На правом берегу туфы, туфоконгломераты и туфобрекчии кислого состава перекрываются ритмично слоистой почкой, в основании ритмов...
Рис. 20.

А — схема геологического строения участка в 5 км к восток-юго-востоку от горы Мамат.
Б — детальная геологическая карта выходов известняков маматской свиты (сост. по данным К. Е. Дегтярева, А. В. Рязанцева, О. И. Никитиной и автора)

1 — кайнозойские отложения; 2—6 — бестамакская свита, средний ордовик: 2 — песчаники и туфопесчаники, 3 — туфы среднестсынного состава, 4 — известняки водорослевые, 5 — алевролиты и мелкозернистые песчаники, 6 — конгломераты; 7—11 — торктудукская серия, верхний кембрий — нижний ордовик: 7—10 — маматская свита, нижний ордовик: 7 — туфоконгломераты, 8 — туфопесчаники, 9 — туфы андезитового состава, 10 — известняки с трилобитами, брахиоподами и конодонтами треладокского яруса, 11 — риолиты, их туфы и туфобрекчи карагутуйской свиты верхнего кембрия; 12 — позднесилурийские гранодиориты Актасского массива; 13 — разрывные нарушения, 14 — местонахождения: а — трилобитов, б — брахиопод; 15 — точки отбора проб на конодонты
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

39

залегают серые калькарениты и известковистые песчаники с обломками эфузивов среднего состава и очень редко гранитоидов (рис. 21). Мощность каждого из трех видимых ритмов 1,5–2 м. Для калькаренитов и песчаников характерна косая слоистость (прил. 3, рис. 8). Далее разрез наращивается серыми и розовыми, часто биокластическими известняками, чередующимися с известковистыми песчаниками. Общая мощность терригенно-карбонатной пачки не более 20–25 м.

На левом берегу также обнажены туфы кислого состава, которые перекрываются туфогенными грубозернистыми песчаниками и брекчиями с обломками кислых эфузивов, мощностью 5 м. Выше залегают серые песчанистые (5 м) и водорослевые известняки (2 м). Разрез наращивается пачкой розовых и красных биокластических известняков с обломками криноидей, брахиопод и трилобитов, чередующихся с прослоями алевролитов. Мощность этой пачки около 10 м. Общая мощность карбонатных пород на левом берегу 25–30 м.

Карбонатные породы в обоих разрезах перекрываются толщей лиловых и зеленых слоистых туфогенных песчаников и алевролитов мощностью более 500 м. Верхняя часть разреза маматской свиты образована литокластическими туфами и туфоконгломератами андезитов и дацитов мощностью до 300 м [Никитин, 1972]. В 1,5 км юго-восточнее изученного участка маматская свита с несогласием перекрывается терригенно-карбонатными породами верхнего ордовика.

Детальное опробование карбонатной части разреза показало, что конодонты в породе содержатся в очень небольших количествах, не превышающих 1–5 экземпляров на 1 кг породы. Только на нескольких уровнях содержание конодонтов в породе оказалось достаточным для

Рис. 21. Разрезы карбонатной пачки маматской свиты на правом (1) и левом (2) берегах безымянного притока ручья Карлыбулак

1 – туфы и туфобрекчи серой калькарениты верхних ярусов; 2 – брекчии; 3 – известковистые песчаники и калькарениты; 4 – известняки водорослевые, микритовые; 5 – известняки розовые и красные, биокластические; 6 – туфопесчаники
определения таксономического состава и возрас
tа комплекса. Всего было извлечено 60 коно
донтовых элементов. В обр. 222 и 223 был обна
ружен одинаковый набор конодонтовых видов, включаящий
Paltodus cf. P. pristinus, Lenaeodus
cf. L. bifidus, Acodus sp. и Colaptoconus bolites. Вы
ше по разрезу в т. н. 225 (45 по схеме опробова
ния И. Ф. Никитина) количественно преобла
daют элементы Acodus?, chingizicus (более 70% от
всех элементов), Cordylodus angulatus, Drepanodus
arcuatus, Paroistodus numarcuatus, Paroistodus
proteus. Все конодонты светлокоричневые относи
тельно слабоизмененные с индексом окраски
(CAI), не превышающим 2,0.

Таким образом, в разрезе известняков выде
ляются два стратиграфических уровня — серо
зеленые известняки содержат конодонты зоны
Paltodus верхнего тремадока, а вышележащие красные известняки по конодонтам относятся к зоне Aco
dus sp. 2 (или Paroistodus proteus) самых
верхов тремадока — низов фло. В целом в ком
плексе маматской свиты доминирует эндемичная
форма Aco
dus sp. 2, в меньшем количестве при
сутствуют виды Drepanodus arcuatus, Paroistodus
proteus, широко встречающиеся во всех отложе
ниях относительно глубоководных фаший, в том
числе и в Балтоскандинии. Типично Балтоскандин
ские таксоны в изученном местонахождении не
обнаружены, в то время как были найдены эле
менты Lenaeodus cf. L. bifidus — вида, который встречается на Сибирской платформе, на Севе
ро-Востоке России и на Аляске. Вид Aco
dus sp. 2, который доминирует в маматской свите, не най
ден в других изученных местонахождениях этого
возраста на территории Казахстана [Дубинина,
2000] и Северного Тянь-Шаня [Дегтярёв и др.,
2012].

Найманская свита. В центральной части Чин
gиз-Тарбагатайской зоны значительные площади занимает кремнисто-терригенные толщи, отнес
енные к найманской свите дапинского и ниж
ней части дарривильского яруса (рис. 22). Свита
общей мощностью 900—1200 м сложена тефро
идами, туффитами, полевошпатовыми, кварц
полевошпатовыми песчаниками, кремнистыми
туфопелитами, известковистыми туффитами,
фтанитами и известняками. Самая верхняя часть
свиты представлена крупнозернистыми песча
никами и конгломератами. Возраст свиты был
обоснован в типовой местности — ур. Найман
относительно многочисленными находками грап
толитов, а также редкими трилобитами и брахио
подами [Никитин, 1972; Орлова, 1993].

Известняки найманской свиты в ур. Най
ман — это карбонатная пачка мощностью до
15 м, имеющая сложное внутреннее строение.
Ее нижняя часть (5—8 м) сложена серыми пе
лотоморфными известняками с большим коли
чеством неокатанных обломков сложнофизных из
вестковисто-кремнистых алевролитов (прил. 3, рис.
9).

Выше начинают преобладать массивные во
dорослевые разности, постепенно переходящие в
плитчатые светло-серые известняки. Верхние
1—2 м сложены плитками до 5—10 см, представля
ющими отдельные ритмы, в каждом из кото
рых присутствует полный цикл от серого и тем
но-серого известника до кремнистого известника
и фтаниту — спонгиллиту (прил. 3, рис. 9).

Известняки найманской свиты в ур. Найм
ман были несколько раз опробованы на коно
донты разными исследователями [Орлова, 1993;
А. К. Жилкайдаров (устное сообщение)], однако
dо недавнего времени из них удавалось выделить
только относительно небольшое количество ко
ndonтовых элементов. Из проб А. Р. Орловой
C. В. Дубинина определила Periodon aculeatus
zingierzensis Dzik, Drepanodus arcuatus Pander
и Panderodus mutatus (Branson et Mehl), что под
твердило раннедарривильский (раннелланвирн
ский) возраст этой части свиты.

В наиболее полном разрезе известняков сви
ты (т. н. 48°54′56,66″ с. з., 79°00′19,87″ в. д.) из
всех разностей карбонатов был отображен ряд проб
на конодонты, которые были обнаружены только
во всей верхней части известнякового пласта
в темно-серых кремнях, перекрывающихся с фтанитами. Всего из 12 кг известняка было выде
лено более 200 конодонтовых элементов. Этот
комплекс конодонтов оказался одним из наиболее
таксономически разнообразных в Казахстане
и включает более 30 видов, среди которых до
минируют виды широкого географического рас
пространения Periodon macrodentatus и Paroistodus
horridus, составляющие 75% от общего количества
конодонтовых элементов. В значительно мень
шем количестве присутствуют Histiodella levis,
Histiodella kristinae, Spinodus spinatus, Costiconus
ethingtoni, Juanognathus jaunussonii, Erraticodon cf.
E. hexianensis, Appalachignathus sp., Panderodus?
nogami, Ansellia jemtlandica, Drepanodus reclinatus,
Drepanodus arcuatus, Parapanderodus sp., Naimanodus
degtyarevi и др.

Возраст комплекса определяется как раннеда
рривильский по совместному нахождению Par
oistodus horridus, Periodon macrodentatus и Histio
della kristinae. Из всех видов именно последний
имеет на Ньюфаундленде узкое стратиграфиче
ское распространение в нижней части дарривиль
ского яруса и рассматривается в качестве маркера
одноименной зоны [Stouge, 1984].
Бестамакская свита. В известняках бестамакской свиты в верховьях р. Чаган еще в 50-х годах XX в. было обнаружено одно из наиболее богатых разнообразной фауной местонахождений в Чингизской зоне. Геологическое строение и стратиграфия этого района были подробно изучены И. Ф. Никитиным (1960, 1962, 1972).

В целом бестамакская свита мощностью до 1000 м сложена преимущественно терригенными флишоидными отложениями. Базальные слои бестамакской свиты образованы аркозовыми песчаниками, выше которых залегает мощная до 200–250 м карбонатная толща. В верхней части свиты в терригенной последовательности начина-
Т. Ю. Толмачева

ют преобладать пачки и слои туфов и тефроидов средне-основного состава.

Нижняя часть бестамакской свиты наиболее хорошо изучена на правом берегу р. Чаган, в устье р. Саргалдак, примерно в 100 м к юго-востоку от известной карстовой пещеры Коныр-Аулие (49°06’15,04” с. ш., 78°32’05,93” в. д.) (рис. 23). Карбонатная толща здесь сложена светло-серыми и белыми массивными водорослевыми известняками, кроме редких крупных гастропод, не содержащих других палеонтологических остатков. Верхняя граница известняков и их контакт с вышележащими туфоалевролитами и туфопесчаниками обнажены очень слабо, но в 60-х годах были вскрыты канавой и детально описаны. В настоящее время эта канава уже не существует.

Нижняя часть вскрытого разреза мощностью около 30 м сложена преимущественно серыми комковатыми известняками, относительно небогатыми фауной. Многочисленные фаунистические остатки приурочены к верхней части разреза, представленной темно-серыми и коричневыми плитчатыми глинистыми известняками, алевролитами и аргиллитами. В прослойях темно-серых, почти черных известковистых алевролитов и аргиллитов (т. н. 533а) были найдены

Рис. 23. Местонахождение и разрез бестамакской свиты на р. Чаган с указанием уровня находок разнообразной фауны и конодонтов по (Назаров, Попов, 1980) и современное стратиграфическое положение отложений

<table>
<thead>
<tr>
<th>Номер</th>
<th>Система</th>
<th>Отдел</th>
<th>Ярус</th>
<th>Гран. зона</th>
<th>Кон. зона</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ордовикская</td>
<td>Верхний</td>
<td>Сапонинский</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Венгрийская ассоциация</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Гониоптерисовые известняки</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Репонгондога</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – гранодиориты, 2 – темные плитчатые известняки, 3 – глинистые известняки и черные известковистые аргиллиты, 4 – массивные водорослевые известняки, 5 – аркозовые песчаники, 6 – туфы, туффиты, туфопесчаники; 7 – точка с граптолитами и другой фауной; 8 – местонахождение конодонтов

Замечено, что текст содержит рисунок и таблицу. Рисунок и таблица содержат информацию, касающуюся геологического разреза и его составляющих. Таблица включает следующие столбцы: Система, Отдел, Ярус, Гран. зона, Кон. зона. В ней указаны названия геологических слоев и пород, а также их географические координаты.
граптоиды Dicranogruptus nicholsoni (Hopkinson), Climacograptus bicornis (J. Hall), Nemagraptus gracilis (J. Hall), Orthograptus sp.

Трилобиты из этого местонахождения были изучены Н. К. Ившином, М. К. Аполлоновым и И. М. Колобовой, замковые брахиоподы — И. Ф. Никитным, граптоиды — Д. Т. Цаев, лингуляты и радиолярии — Л. Е. Поповым и Б. Б. Назаровым [Назаров, 1975; Назаров и др., 1975; Назаров, Попов, 1980; Попов, 1975, 1976]. Кроме того, здесь отмечалось присутствие остроконечных скелетов губок, разных промежуточных организмов и конодонтов.

Несмотря на то что о присутствии конодонтов в этом разрезе было известно еще давно, получил материал для их выделения удалось только несколько лет назад из старых коллекций трилобитов. Всего из 3 кг известняка было выделено около 500 конодонтовых элементов, принадлежащих битов. Всего из 3 кг известняка было выделено несколько лет назад из старых коллекций трилобитов, сколекодонтов, спикул губок, разных промежуточных организмов и конодонтов. Кроме того, здесь отмечалось присутствие остроконечных скелетов губок, разных промежуточных организмов и конодонтов.

В результате исследований юго-восточной части гор Окпекты, проведенных в 2010 г. вместе с К. Е. Дегтяревым, А. В. Рязанцевым и О. И. Никитиной было выявлено трилобиты, неровные остатки одного вида граптолитов Glyptograptus cf. artschalsensis Pavlov (определение Б. М. Келлера), на основании находок которых возраст определялся как верхи лландейло — низов карадока и брахиоподы плохой сохранности Productorthis sp., Sowerbyella sp. (определения Т. Б. Руквишниковой) ордовикского возраста [Мычников и др., 1962]. В результате исследований юго-восточной части гор Окпекты, проведенных в 2010 г. вместе с К. Е. Дегтяревым, А. В. Рязанцевым и О. И. Никитиной было выявлено трилобиты, неровные остатки одного вида граптолитов Glyptograptus cf. artschalsensis Pavlov (определение Б. М. Келлера), на основании находок которых возраст определялся как верхи лландейло — низов карадока и брахиоподы плохой сохранности Productorthis sp., Sowerbyella sp. (определения Т. Б. Руквишниковой) ордовикского возраста [Мычников и др., 1962].

В результате исследований юго-восточной части гор Окпекты, проведенных в 2010 г. вместе с К. Е. Дегтяревым, А. В. Рязанцевым и О. И. Никитиной было выявлено трилобиты, неровные остатки одного вида граптолитов Glyptograptus cf. artschalsensis Pavlov (определение Б. М. Келлера), на основании находок которых возраст определялся как верхи лландейло — низов карадока и брахиоподы плохой сохранности Productorthis sp., Sowerbyella sp. (определения Т. Б. Руквишниковой) ордовикского возраста [Мычников и др., 1962].
оценена лишь приблизительно, составляет более 250–300 м. Ранее именно в породах этой толщи были собраны трилобиты и граптолиты сандбийского возраста. Из двух линз калькаренитов, расположенных в 50 м друг от друга по разрезу, были отобраны пробы (Р-10204 и Р-10204а) на конодонты. В стратиграфически более низкой пробе обнаружено 11 видов конодонтов — *Ansella jemtlandica*, *Dreianoistodus* cf. *D. costatus*, *Histiodella holodentata*, *Juanognathus* sp., *Paroistodus horridus*, *Periodon macrodentatus*, *Panderodus? nogami*, *Protopanderodus* sp., ?*Polonodus* sp., *Costiconus* sp., *Semiacontiodus* sp. Присутствие видов *Histiodella holodentata* и *Paroistodus horridus*, распространенное которых ограничено нижней частью дарривильского яруса, определяет раннедарривильский возраст опробованной породы. Однако здесь не исключено переотложение более древних форм. Из пробы, отобранной выше по разрезу, выделены конодонты *Pygodus serra*, *Periodon aculeatus*, *Drepanodus* sp. Присутствие зонального вида *P. serra* указывает на позднедарривильский возраст линз карбонатов.

Стратиграфически выше по разрезу залегает мощная (50–70 м, редко до 100 м) пачка карбонатных пород, которая маркирует крылья и восточное замыкание антиклинали. В строении пачки участвуют пелитоморфные слоистые водорослевые известняки, в нижней части которых встречаются комковатые биокластические разности с остатками трилобитов и брахиопод. Из биокластических известняков выделены немногочисленные элементы видов *Panderodus* sp. и *Panderodus? nogami* (пр. Д-10109).

Самое верхнее положение в структуре занимает толща эфузивов и туфов среднего и основного состава, которая лучше всего представлена на северном крыле антиклинали. В ее строении участвуют порфировые андезиты, андезибазальты и базальты, среди которых встречаются редкие
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Таким образом, по конодонтам был подтвержден средне-позднеордовикский возраст терригенно-карбонатной и перекрывающей ее вулканогенной толщ гор Окпекты. Кроме того, из карбонатных пород этого местонахождения получен единственный на настоящее время комплекс конодонтов верхней части дарривильского яруса.

Кулунбулакская свита (хр. Тарбагатай). Неоднократные попытки охарактеризовать конодонтов верхнего ордовика из карбонатных пород Казахстана были не слишком успешны. Самые молодые конодонты ашгиллского возраста выделены из ойсуйских известняков чокпарской свиты в районе гор Дуланкара Джалаир-Найманской зоны Чу-Илийского региона. Всего там было обнаружено около десятка конодонтовых элементов *Eobelodina fornicata* [Stauffer, 1935] (= *Belodina* sp.), *Icriodella* sp. и *Acodus similaris*
Рис. 26. Схема геологического строения правобережья р. Базар у выхода из хр. Тарбагатай, по [Никитин, 1972]

Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Rhodes, 1955 (=Scabbardella altipes) [Граница ордовика и силура, 1980].

Конодонты карадока — верхнего ашгилла известны из известников верхов шундинской свиты Актау-Моинтинского массива, где они представлены многочисленными элементами вида Belodina compressa (Branson et Melh) [Бесстрашнов и др., 1989]. Также элементы позднеордовикских Belodina sp., Panderodus sp. и Aphelognathus sp. выделены из карбонатов, вероятно, байдагелетовской свиты (замечание К. Е. Дегтярёва) на южном обрамлении Ерментау-Ниязского антиклинория [Барсков и др., 1983]. Эта работа является единственной, где приведены изображения найденных конодонтов. Находки конодонтов в верхнеордовикских отложениях хр. Тарбагатай были до настоящего времени неизвестны.

В 2010 г. были изучены разрезы кулунбулакской свиты на правом берегу р. Базар. Свита сложена серо-зелеными туфогенными или полимиктовыми песчаниками и алевролитами с пластами конгломератов, туфов, туфо-андезитов и серых, преимущественно водорослевых известняков, мощность которых значительно варьирует от одного разреза к другому. Вулканогенные породы в основном приурочены к нижней и средней частям свиты дуланкаринского возраста, тогда как карбонатные прослои сконцентрированы в верхней части свиты, относящейся к абакскому и чокпарскому горизонтам (рис. 26, 27). В целом свита содержит обильную и разнообразную фауну, в том числе здесь встречается большое количество кораллов, острокак, трилобитов и брахиопод, которые изучены О. П. Ковалевским, Л. М. Мельниковой, М. А. Борисяк и др.

Биокластические разности известняков, в которых могут быть конодонты, очень редки в разрезах свиты, поэтому из трех изученных разрезов
Было отобрано всего десять проб (рис. 27), из которых только в пяти оказались конодонты. Больше всего конодонтовых элементов было получено из нижней части кулунбулакской свиты (т. н. Д-10078: 47°24'23,5" с. ш., 81°47'00,4" в. д.), в других пробах (P10-169 47°25'04,6" с. ш., 81°46'20,6" в. д.; P10-174 47°26'35,3" с. ш., 81°45'07,6" в. д.) конодонты единичны. Комплекс конодонтов на всем протяжении кулунбулакской свиты практически неизменен; потенциальные различия, связанные с довольно значительным стратиграфическим интервалом кулунбулакской свиты, не очевидны из-за небольшого количества конодонтовых элементов. Найдены элементы следующих видов (всего 12 таксонов): Phragmodus undatus, Periodon grandis, Belodina compressa, Yoaxianognathus sp., Belodina sp. 1, Besselodus sp., Paroistodus? Nowlani, Chirognathus? Clifdenensis, Belodina sp. 2, Panderodus sp. В состав комплекса входят виды широкого стратиграфического рас пространения или не идентифицированные до вида формы, у которых стратиграфический интервал неизвестен.

В связи с этим возраст нижней дуланкартинской части кулунбулакской свиты по совместному нахождению Phragmodus undatus и Belodina compressa не может быть определен точнее чем раннекатийский (среднеашгилский), что не противоречит данным по другим группам фауны. Phragmodus undatus появляется в верхней части сандбийского горизонта, где является маркером одноименной зоны [Webby et al., 2004], и продолжает существовать в китайском ярусе, а Belodina compressa появляется только начиная с китайского яруса [Zhang, Barnes, 2007].

Полученные новые материалы по конодонтам, хотя и не уточняют стратиграфические строение региона, но представляют интерес как первые достоверные данные по таксономическому составу позднеордовикских конодонтовых фаун Казахстана.
Это местонахождение мелководных конодонтов является одним из наиболее западных в Казахстане и исключительно важным для биогеографического районирования конодонтовых фаун Казахстана.

ХРЕБЕТ КЕНДЫКТАС (ЮЖНЫЙ КАЗАХСТАН)

Агалатасская свита. Массивные известняки в бассейне рек Агалатас Майбулак и Ргайты в горах Кендыктас, выделенные в агалатасскую свиту, подстилаются серо-зеленоватыми аргиллитами и алевролитами кендыктасской свиты и перекрываются преимущественно пестрыми и красноватыми алевролитами и песчаниками курдайской свиты. В последней также отмечаются редкие маломощные пласты известняков. Эти толщи содержат многочисленные остатки брахиопод, трилобитов и граптолитов, на основании которых кендыктасская свита отнесена к раннему тремадоку, агалатасская — к позднему тремадоку, а курдайская — к флоскому (аренигскому) ярусу [Решения ..., 1991]. Толщи по р. Агалатас многократно описаны Б. М. Келлером, Т. Б. Рукавишниковой (1961), К. А. Лисогор (1961) и др.

Разрез агалатасской свиты в известняковом карьере в 1 км (43°03′07,6″ с. ш., 74°53′46,8″ в. д.) к северо-zapаду от русла р. Агалатас в ее среднем течении (рис. 29) был детально изучен и опробован на конодонты только недавно. Тогда же были отобраны пробы из известняков курдайской свиты из местонахождения в 500 м к юго-востоку от карьера.
В известняковом карьере кендыйтасская свита сложена ритмичным чередованием зеленовато-серых, зеленовато-бурых и лиловых алевролитов, аргиллитов, мергелей и мелкозернистых известковистых песчаников (рис. 29). В нижней части свиты встречаются единичные линзы конгломератов. Для всех глинистых разностей пород характерны скопления ходов илоедов и многочисленные знаки ракушек. На некоторых поверхностях напластования встречаются многочисленные беззамковые брахиоподы и трилобиты.

Агалатасская свита с постепенным переходом, который выражен в постепенном увеличении количества маломощных карбонатных прослоев в преимущественно терригенной толще, залегает на кендыйтасской свите. За основание агалатасской свиты принимается появление первых пластов известковистых песчаников.

Нижняя часть агалатасской свиты сложена зеленовато-серыми известковистыми песчаниками, переслаивающимися с алевролитами и пластами биокластических известняков (15 м), выше которых залегают светло-серые толстослоистые крупноплитчатые до массивных органогенно-обломочные и водорослевые мраморизованные известняки (50 м) с темноцветными прослойями в верхней части. Известняки вверх по разрезу сменяются желтовато-серыми кварцевыми тонкозернистыми песчаниками (40 м) с мелкой, в основном параллельной, слоистостью; для отдельных прослоев характерна тонкая косая слоистость. Среди кварцевых песчаников встречаются отдельные мелкие прослои оливково-зеленых известковистых песчаников и мергелей.

Вышележащая часть разреза представлена однородными темными голубовато-серыми толстослоистыми, крупноплитчатыми, крупнозернистыми до пелитоморфных органогенно-обломочных известняками (до 150 м). В разрезе карьера вскрыта только самая нижняя часть последней пачки. Верхняя часть агалатасской свиты хорошо обнажена к северо-западу от карьера по простиранию гряды, где её верхние пласты на границе с курдайской свитой были опробованы на конодонты (пр. 72 43°02′46″ с. ш., 74°53′23.9″ в. д.). Из этого обнаружения на вершине горы описаны многочисленные замковые брахиоподы [Popov, Vinn, Nikitina, 2001]. Кроме того, ранее Л. Е. Поповым отсюда выделен комплекс конодонтов зоны Paraistodus sp. верхнего тренадока — низов флюсского яруса и богатый комплекс лингулид [Popov, Vinn, Nikitina, 2001].

Из более десятка проб конодонты были обнаружены только в четырех, две из которых относятся к нижней части агалатасской свиты в карьере (прил. 3, рис. 10): первая в верхней части свиты на гряде к юго-востоку и вторая в основном курдайской свиты.

Из двух пластов известняка, расположенных в 15 м друг от друга, в нижней части агалатасской свиты выделен таксономически бедный, но многочисленный комплекс конодонтов с Colaltoconus sp., Drepanodus sp., Rossodus sp., Variabilocconus sp., Gen. et sp. indet., Paltodus sp. zоны Paltodus позднего тренадока. Верхняя часть свиты содержит Drepanodus cf. D. arcuatus, Variabilocconus bassleri и Paroistodus sp. зоны Paltodus. Из известняков курдайской свиты выделены элементы Paroistodus sp. и Paltodus, чье присутствие вместе с Colaltoconus bolites характерно для самой нижней части зоны Paroistodus sp. верхов тренадокского — низов флюсского яруса.

Новые данные по конодонтам подтверждают позднетремадокский возраст агалатасской свиты, однако верхние части свиты оказались древней, чем предполагалось на основании данных предыдущих исследователей [Popov, Vinn, Nikitina, 2001]. Нижняя часть курдайской свиты, которая считалась аренгийской, также может быть отнесена к верхнему тренадоку.

Текелийский район Джунгарского Алатау (Восточный Казахстан)

Тасбулакская свита. Детальное изучение кремнисто-терригенных и терригенно-кремнисто-карбонатных толщ Коксу-Текелийского рудного района Джунгарского Алатау началось в 80-х годах XX в. [Нikitин и др., 1993]. До начала этих
Рис. 30. **A** — Схема геологического строения рудовмещающих толщ ордовика в правобережье р. Текели, по [Никитин и др., 1993]. **B** — Сводный разрез нижнего и среднего ордовика с расположением пробы на конодонтов, по [Никитин и др., 1993]

1, 2 — тасбулакская свита: 1 — алевролиты, 2 — углисто-кремнистые алевролиты, фтаниты, известняки; 3—6 — текелийская свита: 3 — кварцево-кремнистые конгломераты, 4 — сланцы по кварцевым песчаникам, 5 — углеродистые сланцы, 6 — то же с прослоями известняков; 7 — нижнесууктюбинская подсвита: глинисто-кремнисто-известковистые ритмиты; 8 — бигашская свита (нижний девон); 9 — дайки кислого состава; 10 — местонахождения конодонтов; 11 — разломы

В 2010 г. для уточнения таксономического состава конодонтов был проведен детальный стратиграфический анализ, результаты которого были опубликованы в многочисленных работах Келлера, Рукавичникова, Никитин, 1972; Чу-Илийский ... , 1980; Мельникова, 1986; Никитина, Тимофеева, 1991; Цай, 1988; Popov, Cocks, Nikitina, 2002; Popov, Nikitin, Cocks, 2000; Popov, Nikitin, Sokiran, 1999; Popov, Vinn, Nikitina, 2001; Nikitina, Popov et al., 2006; Никитина и др., 20086]. В среднем и верхнем ордовике этого района преобладают терригенные и карбонатные породы мелководно-морских фаций. Из них хитоновых червей, карбонатных пород, гранитилитов и остраходов, в меньшей степени — трилобиты. Неоднократно предпринимались попытки выделить из карбонатов конодонты, но удалось выделить из конодонтовых элементов, сложенных органогенно-обломочными и органогенными (водорослево-строматопоровыми) и органогенно-обломочными. Из органогенных остатков лучше всего здесь изучены брахиоподы, гранитилиты и остраходы, в меньшей степени — трилобиты. Нередко эти виды имеют около 10 кг породы и выделено около 1500 конодонтовых элементов. Среди конодонтов доминируют элементы Periodon macrodentatus, составляющие...

Рис. 31. Геологическая схема ур. Кояндысай с указанием местонахождения отбора конодонтов (т. 156), по [Nikitina et al., 2006]

1–6 – узунбулакская свита: 1 – алевролиты с пластами песчаника и известняка, 2 – песчаники, 3 – хаотические комплексы, 4 – песчаники и алевролиты, лигзы конгломератов, 5 – известняки и алевролиты, 6 – крупноблочные конгломераты; 7–11 – андеркенская свита: 7 – алевролиты и аргиллиты, 8 – известняки, 9 – песчаники и алевролиты, 10 – песчаники, 11 – конгломераты; 12 – бекейская свита (песчаники, алевролиты и аргиллиты); 13 – девонские конгломераты и красноцветные песчаники; 14 – четвертичные отложения; 15 – гнейсы и метаморфические сланцы; 16 – дайки; 17 – разломы

КИПЧАКСКИЙ (ДЖАЛАИР-НАЙМАНСКИЙ) РАЙОН (ЮГО-ЗАПАДНЫЙ КАЗАХСТАН)

Караканская свита (Северная Бетпак-Дала). Один из наиболее известных обнажений карбонатных пород ордовика в Северной Бетпак-Даля – это выходы караканской свиты, согласно залегающей на кремнисто-терригенных отложениях кушекинской свиты [Никитина и др., 2008б]. Караканская свита в районе изученного кремнистого разреза Голубой гряды сложена серыми, лилово-серыми и бурыми кремнисто-глинистыми, глинисто-известковистыми сланцами и алевролитами с прослоями сургучно-красных глинистых яшм. В 2004 г. в яшмах были обна-
руже́ны элемен́ты Paroistodus horridus. К кара-канской свите также относят встречаемые на других участках разнозернистые (до гравелитов) кварцево-полимиктовые песчаники с неритмичной слоистостью, органогенные и органогенно-обломочные известняки. Последние образуют крупные линзовидные тела, состоящие из тол-стоплитчатых и массивных водорослево-строматопоровых известняков.

Стратотип караканской свиты, описанный Б. М. Келлером и К. А. Лисогор, находится на пологой возвышенности, названной ими Караканским увалом (рис. 32) в 14 км северо-западнее Голубой гряды [Келлер, Лисогор, 1954]. Это

Рис. 32. Геологическая схема Караканского увала с указанием местонахождения отбора конодонтов, по [Никитин и др., 2008]

1 — офиолиты; 2 — офиолитокластовые грубооблопочные породы и песчаники базальных слоев караканской (?) свиты; 3–5 — караканская свита: 3 — кварцево-полевошпатовые песчаники с зернами хромшпинелидов, 4 — углисто-кремнистые аргиллиты, алевролиты, 5 — известняки; 6–8 — савидская (?) свита: 6 — гравелиты, конгломераты, 7 — углистые аргиллиты, алевролиты, туфопесчаники, 8 — брекчаевидные известняки; 9 — дайки средне-основного состава; 10 — керны скважин; 11–14 — местонахождения фауны: 11 — брахиоподы, трилобиты, наутилоидеи, 12 — граптолиты, 13 — то же (т. н. Б. М. Келлера, Д. Т. Цая), 14 — конодонты; 15 — линия разреза; 16 — линии разломов
местонахождение изучалось неоднократно начиная с работ Д. И. Яковлева в 30-х годах прошлого века [Никитин, 1972; Чу-Илийский ..., 1980; Никитина и др., 20086].

Караканский увал — это линзоподобное тело известняков мощностью до 120 м, которое в целом плохо обнажено и сильно дислоцировано. На поверхности наблюдаются только отдельные выходы известняков, в большей части которых отсутствуют какие-либо фаунистические остатки. В нижней части карбонатного тела, в одном из выходов (т. н. 2033 И. Ф. Никитина), были обнаружены многочисленные остатки брахиопод, гастropод, наутилодидей и массовые скопления разнообразных трилобитов, представленных преимущественно эндемичными таксонами. Граптолиты среднего ордовика встречаются на ряде уровней в прослоях углисто-кремнистых сланцев, где они сложены ретал, западнее и юго-западнее горы Байгара ограниченной территории в пределах лога Каратальской свиты выделяется на относительно северном участке юго-западнее горы Байгара караканской свиты (участок юго-западнее горы Байгара) охватывает интервал арениг и лланвирна [Чу-Илийский ..., 1980]. Однако до сих пор возраст нижней границы свиты оставался спорным вопросом. Так, в стратиграфических региональных схемах Казахстана (1991) возраст карбальской свиты ограничен только поздним аренигом — лланвирном (т. е. только дапинским — дарривильским веками). Этот вывод был сделан на основании изучения участка южнее горы Байгара, где распространены отложения карбальской и, согласно региональным схемам Казахстана, подстилающей ее акжальской свиты, сложенной преимущественно карбонатами [Палец, 1965; Решиения ..., 1991]. На участке южнее горы Байгара акжальская свита охарактеризована трилобитами и граптолитами, окрашенных в кремнистого и флюсского ярусов, а нижняя граница карбальской свиты по граптолитам соотнесена с основанием дапинского яруса [Палец, 1965]. Надо отметить, что на другом участке в типовом разрезе акжальской свиты (гора Акжал), помимо раннеордовикских конодонтов Acodus sp., отмечены находки трилобитов Bumastoides cf. betpakensis Weber, Lonchodus sp. и Annamitella (=Bathyuriscops) sp., свидетельствующие о более широком возрастном диапазоне свиты вплоть до дарривильского яруса [Никитин, 1972; Popov et al., 2009]. Это позволяет некоторым исследователям предполагать, что карбальская и акжальская свиты являются фашиальной тектонической аналогией [Popov et al., 2009].

В 2006 г. на участке южнее горы Байгара, где терригенная толща карбальской и известняки акжальской свит имеют тектонические соотношения, были сделаны попытки определить возраст карбальной свиты по конодонтам. В поле развития карбальной свиты среди кремнистых туфоалевролитов, туффитов и алевролитов карбальной свиты найден единственный про слой сплошных обломочных песчанистых известняков мощностью 25 см (45°08′02,8″ с. ш., 72°13′03,8″ в. д.). Из пробы Р05-24 выделены элементы видов Oepikodus evae, Oelandodus elongatus, Tropodus? sweeti, Lundodus gladiatus, Periodon flabellum, Juanognathus variabilis, Drepanodus reclinatus, Cornuodus longibasis, Bergstromognathus extensus, Erraticodon cf. E. hiansensis и ряд других таксонов, определенных в открытой номенкла-
туре (всего 17). Среди конодонтовых элементов существенно преобладают элементы *Oepikodus evae*, присутствие которых определяет возраст части свиты, содержащей пролой известняков как зону *Oepikodus evae* верхней части флюсогого яруса.

Данные по конодонтам подтверждают флюсогогный возраст нижней части каратаульской свиты, предположительно установленный по грапто́литам [Чу-Илийский ..., 1980], и перекрытие стратиграфических интервалов каратаульской и акжальской свит. Однако основное значение этого местонахождения в том, что оно является единственным в Казахстане (кроме Малого Каратау), которое дает возможность характеризовать таксономически разнообразную относительно мелководно-морскую фауну конодонтов верхней части флюсогого яруса.

ЗАПАДНАЯ ЧАСТЬ КИРГИЗСКОГО ХРЕБТА (СЕВЕРНАЯ КИРГИЗИЯ)

Кенташская толщина. Присутствие конодонтов в прослоях и линзах карбонатных и кремнистых пород преимущественно территорно-вулканогенных толщ западного окончания Киргизского хребта доказано уже давно [Максумова и др., 1987; Апаяров и др., 2008], но до настоящего времени их систематическое изучение не проводилось. В 2009 г. в ходе изучения геологического строения региона были опробованы подходящие для этих целей породы. Поиск конодонтов в небольшой части проб, как кремнистых, так и карбонатных, оказался успешным, что впервые позволяло точно определить возраст отложений, ранее датированных по крайне редким находкам макрофауны относительно плохой сохранности. Кроме того, эти работы дали возможность охарактеризовать ранее почти не изученную конодонтовую фауну Северного Тянь-Шаня.

Новые данные по конодонтам ордовика были получены из разрезов кенташской толщи, породы которой слагают тектоническую пластину на северо-восточном крыле Малькабальской антиформы (южный склон и приводораздельная часть запада Киргизского хребта, в бассейне ручьев Кенташ и Чонг Кок-Кыя, к северу от пос. Келпурё Базар) (рис. 33). Кенташская толща сложена преимущественно вулканогенными и вулканогенно-осадочными породами и интерпретируется как остродондный комплекс нижнего-среднего ордовика [Дегтярёв и др., 2012]. Различные части этой толщи ранее относились к нижнему, среднему и верхнему ордовику, а также к нижнему девону [Апаяров и др., 2008; Стратифицированные и интрузивные ..., 1982].

В настоящее время в разрезе толщи выделяются три мощных пачки или подтолщи, различающиеся особенностями строения разреза и составом вулканогенных и вулканогенно-осадочных пород [Дегтярёв и др., 2012]. Нижняя пачка обнажена к югу от ур. Чонг Кок–Кыя. Ее нижняя часть (450–500 м) сложена эффузивными и пирокластическими породами, среди которых преобладают грубообломочные лито-кри сталлолакустические туффы андезибазальтового и базальтового состава с отдельными прослоями тонкослоистых туффитов, туфоалевролитов и потоками афировых миндалекаменных и порфировых подушечных базальтов, а также редкими линзами известняков. Разрез нижней пачки завершает туфогенно-карбонатная пачка (80–90 м), низы которой сложены серыми слоистыми глинистыми и песчанистыми известняками с прослоями мелкозернистых песчаников и алевролитов мощностью около 5 м. Средняя часть пачки (мощностью около 50 м) сложена ливовыми туфопесчаниками и туфоалевролитами. При этом вверх по разрезу возрастает карбонатность пород и появляются маломощные прослои органических известьков.

Верхняя часть пачки (мощностью около 30 м) представлена массивными серыми водорослевыми известняками, которые сменяются маломощными прослоями карбонатных пород. Разрез нижней пачки обнажен к югу от ур. Чонг Кок–Кыя. Ее нижняя часть (450–500 м) сложена эффузивными и вулканогенно-осадочными породами преимущественно терригенно-вулканогенными и вулканогенно-осадочными породами, среди которых преобладают грубообломочные лито-кри сталлолакустические туффы андезибазальтового и базальтового состава с отдельными прослоями мелкозернистых песчаников и алевролитов мощностью около 5 м. Средняя часть пачки (мощностью около 50 м) сложена ливовыми туфопесчаниками и туфоалевролитами. При этом вверх по разрезу возрастает карбонатность пород и появляются маломощные прослои органических известьков.

В биокластических известняках верхней части пачки (т. н. Д-9070 42°30'15,80" с. ш., 72°54'56,80" в. д.) присутствует практически такой же комплекс конодонтов. Среди них доминируют элементы *Drepanodon arcuatus*, *Paroistodus proteus*, *Drepanoistodus latus*, *Tropodus? sweeti* и *Acosdus* sp. 3. Многие виды этого комплекса широко распространены на других континентах [Pyle, Barnes, 2003]. Их сонахождение характерно для зоны *Paroistodus proteus* верхов трегадокского и самых низов флюсогого яруса нижнего ордовика. Эти находки позволяют относить нижнюю подсвиту кенташской свиты к верхам трегадок — низам флюсогого яруса нижнего ордовика.

Средняя подтолща кенташской толщи распространена на широкой площади между ур. Чонг
Кок-Кыя на востоке и долиной руч. Кенташ на западе. Разрез этой подтолщи начинается с пачки переслаивания мелкообломочных литокристаллокластических туфов дацитового состава, туфопесчаников, туффитов и кремнистых туффитов (мощность около 150 м).

Далее разрез наращивается грубообломочной пачкой, которая сложена конгломератами и пудинговыми конгломератами с хорошо окатанными гальками вулканитов кислого и среднего состава, а также крупными обломками кремнистых тuffитов, небольших (до 4–5 м) глыб и более мелких обломков известняков. Выше по разрезу среди конгломератов встречаются оползневые тела кремнистых слоистых известняков мощностью 3–5 м, которые прослеживаются по простиранию на 10–15 м. Мощность грубообломочной пачки составляет около 100 м. Выше залегает пачка (мощностью около 10 м) тонкослоистых известковистых алевролитов и известняков, мощностью около 150 м.

Из оползневого тела глинистых известняков выделены немногочисленные элементы конодонтов Scolopodus? oistodiformis, Tropodus? sweeti, Drep-
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Из пробы, взятой из тонкой линзы известняков мощностью 3–5 см в пачке серо-зеленых известковистых алевролитов с многочисленными фрагментами трилобитов (т. н. Д-9066 42°30'46,10" с. ш., 72°55'31,10" в. д.), выделен очень богатый и разнообразный комплекс конодонтов: Bergstroemognathus extensus, Oelandodus elongatus, Drepanodus arcuatus, Paroistodus proteus, Cornuodus longibasis, Tropodus australis, Paracordyloicus gracilis, Juanognathus variabilis, Stolodus siola, Drepanoistodus sp., Scelopodus? oistodiformis, Drepanoistodus costatus,

Рис. 34. Разрезы кенташской свиты, по [Дегтярёв и др., 2012]

1 — туфы риолитов; 2 — туфы дацитов; 3 — андезиты; 4 — туфы андезитов; 5 — андезибазальты; 6 — туфы андезибазальтов; 7 — базальты; 8 — туфы базальтов; 9 — местонахождения трилобитов; 10 — место отбора пробы для геохронологических исследований и ее номер.
Приведено изложение о находках конодонтов в кенташской свите. В целом в этой пробе насчитывается более 1500 конодонтовых элементов, принадлежащих 23 видам, часть которых определена в открытой номенклатуре из-за недостаточного количества найденных экземпляров. В составе комплекса доминируют виды Acodus sp. 3, Drepanodus arcuatus и Tropodus australis, которые составляют до 80% от общего количества конодонтовых элементов. Возраст комплекса уверенно определяется в пределах низов флоского яруса (зона Prioniodus elegans) на основании совместного нахождения Bergstroemognathus extensus, Paracordylodus gracilis, Oelandodous elongatus и Paroistodus proteus. Кроме того, находка нескольких элементов Prioniodus elegans позволяет предполагать, что возраст изученной карбонатной линзы находится в пределах начала одноименной зоны нижней части флоского яруса раннего ордовика, когда номинальный вид еще не встречается в массовых количествах. Конодо́нты, собранные из тела известняков и андезитовых туфов, содержатые необольшие линзовидные прослои тонкослоистых туффитов и кремнистых туффитов, выше залегает мощная пачка подушечных миндалекаменных базальтов и туфов основного состава. Мощность этой части разреза верхней подсвиты может составлять 500–600 м. Общая мощность разреза кенташской свиты более 1500 м.

Кроме того, ранне-среднеордовикский (верхняя часть верхнего тремадока – нижняя часть дарривилья) возраст кенташской свиты подтверждается U-Pb датированием цирконов из туфов дацитового состава [Дегтярёв и др., 2012]. Возраст цирконов из средней подсвиты составляет 474 ± 2 млн лет, что соответствует нижней части флоского яруса нижнего ордовика, подошва которого определена как 477,7 ± 1,4 млн лет, а кровля как 470,0 ± 1,4 млн лет [Gradstein ... , 2012]. В целом полученные геохронологические и биостратиграфические данные о возрасте вулканогенно-осадочных пород демонстрируют очень хорошую сходимость.
БИОСТРАТИГРАФИЧЕСКОЕ РАСЧЛЕНЕНИЕ ПО КОНОДОНТАМ ОРДОВИКА ЗАПАДНОЙ ЧАСТИ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА

Биостратиграфическое расчленение осадочных толщ — одна из наиболее важных целей изучения конодонтов. Основной задачей построения местных биостратиграфических шкал является наиболее точное расчленение разрезов и увязка предлагаемых биостратиграфических границ с уже выделенными подразделениями по конодонтам в других частях палеобассейна. В осадочных бассейнах Казахстана, где изученность конодонтов ранее была недостаточной, и биостратиграфическое расчленение предлагается впервые, в том числе решается более крупная проблема разработки региональной (провинциальной) шкалы и ее корреляции с зональными подразделениями глобальной хроностратиграфической шкалы. Поскольку таксономический состав фауны в мелководных и глубоководных фациях Казахстана сильно отличается, то региональные биостратиграфические шкалы предлагаются для глубоководных и мелководных отложений палеозоя Казахстана.

В Казахстане с его длительной историей геологических исследований хорошо изучены многие группы фауны, включая брахиопод, трилобитов, остракод, криноидей, цефалопод, кораллов и радиолярий. Но из-за сложного геологического строения ордовикских толщ, в составе которых преобладают терригенные и терригенно-вулканогенные породы, а протяженные карбонатные разрезы редки, многие палеонтологические находки разобщены и известны только в отдельных местонахождениях. Непрерывное распространение видов исключительно редко прослеживается в одном и том же разрезе, а все предложенные зональные шкалы, в том числе по трилобитам [Аполлонов, 1974] были составлены из надстраивающих друг друга интервалов отдельных зон. Границы большинства из них не смыкались и тем более не перекрывались. В результате все группы фауны в региональной стратиграфической шкале Казахстана, кроме граптолитов, представлены только характерными комплексами органических остатков [Решения ... , 1991].

Наибольшее значение для стратиграфии Казахстана имели граптолиты, которые начали изучаться с 50-х годов XX в. Эта группа фауны, которой занимались Б. М. Келлер, А. М. Обут, Д. Т. Цай, Н. Ф. Михайлова, давала возможность определять возраст терригенно-кремнистых и терригенных отложений, где другие фаунические остатки были неизвестны. Первая зональная шкала по граптолитам была предложена уже в 60-х годах [Келлер и др., 1956], позднее она неоднократно дополнялась и модифицировалась [Никитин и др., 1968]. Если для мелководных карбонатных и карбонатно-терригенных отложений биостратиграфическое расчленение было в той или иной степени разработано уже давно, то биостратиграфия относительно более глубоководных кремнистых отложений в этом смысле сильно отставала. Радиолярии, которые изучал Б. Б. Назаров, хотя и были единственной фауной, позволяющей датировать кремнистые отложения [Назаров, Попов, 1980], часто давали неточный возраст. Необходимо отметить, что до сих пор данные по радиоляриям ордовика, особенно по его ранней половине, единичны, а зональные шкалы по этой группе фауны только разрабатываются [Danelian, Popov, 2003]. По конодонтам за 15 лет с момента их обнаружения в кремнистых отложениях нижнего и среднего Казахстана [Гридина, Машкова, 1977] был накоплен огромный объем фактического материала. На основе точечных сборов конодонтов были выделены комплексы, которые вошли в региональную стратиграфическую схему Казахстана [Решения ... , 1991]. Н. К. Двойченко и Г. П. Абаимова (1986) обосновали существование позднеамбрійского комплекса конодонтов с Cordyloodus и Phakelodus tenuis, тромадокского комплекса с Drepanoistodus и Drepanodus, двух аренигских комплексов с Paracordyloodus gracilis, Oepikodus eue, Oistodus lancealatus, Stolodus stola и Periodon flabellum, Microzarkodina flabellum, и лланвирнского с Pygodus serra и Phragmodus sp. (рис. 35). Несмотря на то что эта работа долгое
Рис. 35. Разработанные ранее схемы биостратиграфического расчленения ордовика Казахстана по конодонтам и сопоставление с вновь предложенными для глубоководных и мелководных отложений.
время являлась единственной, где были при-
веденны фотографии и качественные рисунки коно-
донтов в кремнях, некоторым видам коно-
donтов давались названия морфологически
сходных элементов из одновозрастных прин-
ципиально лучше изученных фаун Эстонии
и средней Швеции. Среди них такие виды, как
Oistodus lancealatus, Stolodus stola, Microzarkodina
flabellum, Phragmodus sp. и другие, присутствие
которых в кремнистых фациях Казахстана не
подтверждено. Тем не менее работа показала
возможность определения возраста кремнистых
отложений с точки зрения до яруса в пределах ниж-
него и среднего ордовика.

Л. А. Курковская (1985) выделила шесть коно-
donтовых комплексов, самым древним из кото-
рых является раннеаренигский — с Oepikodus evae
и Periodon flabellum. Комплекс позднего арена
включал Paracordylodus gracilis, Periodon flabellum,
Paroistodus parallelus и Periodon zgierzensis. В дан-
ном случае Л. А. Курковская, хорошо рас-
познавая и правильно определяя возраст этой
ассоциации конодонтов, неверно идентифициро-
вала элементы Fahreausodus видом Paracordylodus
gracilis. Третий комплекс, включающий Periodon
zgierzensis, Paracordylodus gracilis, Pandorodus gra-
cilis, Scalpelloodus cavus и Baltoniodus medius, сопо-
стоялся с кундаским горизонтом Балтоскандин
и был отнесен к нижней части планвирикова
яруса. В более высоких слоях планвири, кор-
релируемых с азерицким горизонтом Балто-
скандии, был распзнан четвертый комплекс с Periodon
aculeatus, Histiodella sinuosa, Prioniodus medius
и Paracordylodus gracilis. Пятый и шестой
комплексы характеризовались видами Pygodus
serra и Pygodus anserinus соответственно. Поми-
мо этих видов и вида Periodon aculeatus, элементы
которого хорошо определяются в кремнях,
в комплекс были включены и таксоны, присут-
ствие которых в кремнях не подтверждено. Это
Panderodus gracilis, Baltoniodus alatus, Pteracontiodus
alatus и Protopanderodus varicosatus.

Кроме того, Л. А. Курковская отмечала и на-
личие более молодых комплексов конодонтов ка-
радоско-ашгилского (сандбийско-катийского)
возраста с Periodon grandis, Protopanderodus insculp-
tus и Panderodus gracilis (рис. 35).

С. В. Дубинина выделила в кремнисто-терри-
геннном разрезе Сарыкумской зоны Северо-За-
падного Прибалхашья слон с конодонтами, ана-
логичные слоям преимущественно карбонатных
разреза Батырбай гор Малого Каратуа [Дубини-
на, 2000]. Чуть позднее в двух известных на то
время выходах бурбайтальской свиты (Памят-
ник природы — т. н. 89101 и 9706) (рис. 6, 7) была
определена последовательность зон в интервале
от верхнего кембрия до нижней части флюсного
яруса [Tolmacheva et al., 2001, 2004].

Эти работы, как и многочисленные публика-
ции, в которых приводятся списки конодонтов
для определения возраста кремнистых отложе-
ний, показали, что конодонты, безусловно, яв-
ляются хорошим и порой единственным инстру-
ментом датирования с точностью до частей яруса.
Им, в отличие от брахиопод и трилобитов, коно-
dонты могут быть использованы для определе-
ния возраста кремнистых отложений региональных
подразделений только при их визуальному
изучении на поверхности напластования
кремней.

В настоящее время стало очевидно, что полно
характеризовать конодонтовую фауну из крем-
ней возможно только при выделении конодон-
тов из кремнистых пород, аналогично тому, как
конодонты извлекаются из карбонатов. Попытки
выделения конодонтов из кремней предпринима-
лись и ранее [Zhilkaidarov, 1998], но широко этот
метод был использован только недавно в настоя-
щей работе. Другим важным шагом стали изуче-
ние разрезов не по высшему над уровнем, а в непрерывных
разрезах, и прослеживание стратиграfiческого
распространения видов, что стало возможным
после обнаружения конденированного характери-
за кремнистых толщ [Толмачева, 1996].

Единственным специалистом, систематически
изучавшим конодонтов из карбонатных пород
Казахстана, была С. В. Дубинина. Выделенная
ею в разрезе Батырбай (Малый Каратуа, Южный
Казахстан) последовательность зон в интервале
верхнего кембрия — середины флюсного яруса
нижнего ордовика своей детальностью вполне
сопоставима с зональными шкалами стран Бал-
tоскандин и Северной Америки [Дубинина, 2000]
(рис. 35). Предложенная ею шкала построена на
первом появлении таксонов широкого геогра-
фического распространения, встречающихся как
в кремнистых отложениях Казахстана, так и в ре-
гионах, относящихся к Северо-Атлантической
провинции, в том числе и в Балтоскандин.

Региональная стратиграфическая шкала Каз-
ахстана очень незначительно задействует коно-
donты, поскольку ее разработка началась с начала
50-х годов, когда конодонты не были известны
[Келлер и др., 1956; Аполлонов, 1968; Никитин,
1972]. Кроме того, все горизонты установлены
в терригенно-карбонатных и карбонатных разре-
зах, где широко встречаются только гранитолиты
и бентосные группы фауны. При этом призаботы
и брахиподы играют роль внутрирегиональных
маркёров горизонтов, сопоставление горизон-
тов с Общей стратиграфической шкалой осущест-
вляется при помощи гранитолитов.
в шкале, принятой на последнем Казахстанском стратиграфическом совещании в 1986 г. [Решения ..., 1991]. В этой шкале немногочисленные данные по конодонтам, в том числе и из кремнистых толщ, дополнили характеристику горизонтов, а конодонты из разреза Батырбай послужили для обоснования нижней границы угнурского горизонта, нижняя часть которого относится к кембрию, а верхняя к ордовику.

В настоящее время региональная шкала Казахстана включает 12 горизонтов, границы которых определяются граптолитами, конодонтами, комплексами трилобитов и литологическими маркерами [Никитин и др., 2006].

Нижняя граница андеркенского горизонта определяется основанием зоны N. gracilis целиноградского горизонта [Цай, 1988, обр. Ф-225, 137].

Нижняя граница дуланкаринского горизонта в типовом разрезе одноименной свиты в горах Дуланкара на юго-востоке Чу-Илийских гор проводится по основанию отарских слоев, в которых встречается первое появление типичной ракушняковой фауны (брахиопод). Чокпарский горизонт в типовом разрезе чокпарской свиты по р. Анжар (Кызылсай) на юго-востоке Чу-Илийских гор [Келлер, 1956; Граница ордовика и силура в Казахстане, 1980; Цай, 1988] установлен по подошве зоны Duplexograpthus inuiti.

Дурбенский горизонт определен по подошве зоны Normalograpthus extraordinarius в типовом разрезе нижней части жалаирской свиты (опорный разрез Дурбен) к югу от долины Дурбен, расположенного в среднем течении р. Ащису [Никитина и др., 2008a].

Учитывая относительно слабую фаунистическую насыщенность ордовикских толщ, в том числе и карбонатных, границы горизонтов в конкретных разрезах в подавляющем большинстве случаев не определямы. Кроме того, прямо указать, к какому горизонту относятся те или иные карбонатные толщи возможно только по бентосным группам фауны. По гранитолитам и конодонтам принадлежность отложений к региональному подразделению определяется формально через Общую стратиграфическую шкалу.

В кремнистых толщах, где изучены конодонты и гранитолиты, отсутствуют какие-либо сопутствующие группы фауны, позволяющие прямое прослеживание границ региональных стратонов. В карбонатных или карбонатно-терригенных типовых разрезах горизонтов конодонты не изучены или не обнаружены. И только в случае некоторых уровней с карбонатными отложениями (например, узунбулакская свита), содержащими...
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

В целом для Казахстана, как и для других складчатых регионов с тектонически сближенными отложениями разных седиментационных обстановок, региональная шкала имеет значение как хроностратиграфическая региональная линейка только в случае отложений, охарактеризованных бентосными группами. Кроме того, она не является отражением истории геологического развития региона, а служит только для возрастной увязки осадочных последовательностей.

Как уже упоминалось, последовательность комплексов конодонтов в отложениях ордовика Казахстана дает возможность выстроить систему биостратиграфических подразделений, напрямую связанную со шкалой геологического времени. Корреляция биостратиграфических подразделений по конодонтам Казахстана с Общей...
БИОСТРАТИГРАФИЧЕСКАЯ ШКАЛА ГЛУБОКОВОДНЫХ ОТЛОЖЕНИЙ

Зональные подразделения, основанные на изучении распространения конодонтов в непрерывных разрезах конденсированных кремнистых толщ бурубайтальской свиты и послойных сборах конодонтов, были выделены относительно недавно [Tolmacheva et al., 2001, 2004]. Предложенные в данной работе биостратиграфические подразделения опираются на интеграцию опубликованных и новых данных по всем изученным разрезам и отдельным местонахождениям конодонтов в кремнях.

Поскольку целью создания зональной шкалы по конодонтам является определение возраста отложений и корреляция разрезов, то выбор конодонтов видов-индексов зональных подразделений в значительной степени определялся легкостью их нахождения и выявления при визуальном просмотре кремней. Этот метод является единственным легкодоступным способом изучения конодонтов в кремнистых отложениях и широко используется в практике геологических работ в Казахстане. Другие принципиальные моменты, которые учитывались при выборе зонального вида, — это узость его стратиграфического распространения и одновременность его первого появления в других регионах.

Предложенная зональная шкала построена на первом появлении таксонов, за исключением акмезон Periodon flabellum/macrodentata и Periodon aculeatus, в стратиграфическом интервале которых другие характерные виды или не встречаются или встречаются в незначительном количестве, недостаточном для их точной диагностики.

Снизу вверх выделяются следующие зоны:

Зона Periodon grandis

Зона Pygodus anserinus

Зона Pygodus serra

Зона Hirsutodontus sp., Eoconodon sp., Prioniodus elegans, Prioniodus oepiki

Зона Cordylofacis longibasis

Зона Rossodus

Зона C. angulatus

Зона Cordylofacis lindstroemi

Зона Oepikodon evae

Зона Prioniodus elegans, Prioniodus oepiki

Зона Prioniodus proavus, Hirsutodontus sp., Eoconodontus notchpeakensis, а также мелкие конические эле-
менты прото- и параконодонтов. В Казахстане зона также установлена в разрезе Батырбай Малого Каратан [Дубинина, 2000].

Как и все представители рода *Cordylodus*, вид *C. Lindström* распространен почти повсеместно во всех типах отложений от кремнистых пород Казахстана до доломитов и песчаников Сибири, Северной Америки и Балтоскандии. Первое появление представителей этого вида из-за его морфологических особенностей не всегда бывает просто определить. Это препятствовало выбору *C. Lindström* в качестве маркера нижней границы ордовикской системы. Однако нижняя граница номинальной зоны в конкретных разрезах Казахстана и других регионов в относительно небольших коллекциях определяется более или менее однозначно. Она располагается в самых верхних кембриев, стратиграфически чуть ниже первого появления вида *Iapetognathus fluctivagus*, который выбран как маркер основания ордикова [Cooper et al., 2001; Dong et al., 2004]. Поскольку находки представителей рода *Iapetognathus* на территории России и в Казахстане единичны [Дубинина, 2000; Сенников и др., 2014], то подошла зоны *Cordylodus Lindström* — это часто единственная возможность установить уровень, близкий к нижней границе ордовикской системы.

В разрезах бурубайтальской свиты, где есть проявления барита, стратиграфический интервал верхнего кембрия — нижнего ордовика осложнен развитием специфических фаций, в которых конодонты или отсутствуют, или недоступны для изучения. Зона *Cordylodus Lindström* обнаружена в пределах Казахстана только в трех разрезах — в разрезе Памятник природы бурубайтальской свиты — 89101, в акдынской свите (горы Нияз) Ерментауской зоны и в разрезе Батырбай Малого Каратан [Дубинина, 2000]. Нижняя граница зоны *Cordylodus Lindström* в Казахстане сопоставляется с нижней границей одноименной зоны в Балтоскандии и в других регионах мира.

Зона Cordylodus angulatus отмечается в разрезе Памятник природы бурубайтальской свиты — 89101. Определяется в интервале от первого появления *Cordylodus angulatus* до первых элементов *Rossodus*. В других разрезах бурубайтальской свиты найдена либо в неполном объеме, либо недостаточно детально изучена. В комплекс зоны, кроме номинального вида, входят *Cordylodus lindstroemi, Eoconodontus notchpeakensis, Decoriconus peselephantis* и *Cordylodus reclinatus, Kallidontus corbatoi, Dreianodus arcuatus, Tropodus sp.*, и *Dreianodus reclinatus*. Нижняя граница зоны сопоставляется с основанием одноименных зон в Балтоскандии и Аргентине.

Зона Rossodus выделена в разрезе Памятник природы бурубайтальской свиты — 89101. Она также прослеживается в разрезе Сарышум в Северо-Западном Прибалхашье как зона *Rossodus mantitouensis* — *Chrosonodina herfurthi* [Дубинина, 2000]. Основание зоны — появление элементов *Paltodus* или *Rossodus* в комплексе с немногочисленными *Decoriconus peselephantis* и *Teridontus sp.*. В интервале этой зоны таксономический состав конодонтовых комплексов достаточно слабо изучен, так как конодонты из кремней не удалось выделить растворением. В связи с этим точная идентификация редких элементов *Rossodus* и других конических конодонтов оказалась невозможной.

Нижняя граница зоны *Rossodus* условно сопоставляется с основанием зоны *Paltodus deltifer* Балтоскандии.

Зона Acodus longibasis выделена в разрезе Памятник природы — 9706 бурубайтальской свиты как интервал между первым появлениям *Acodus longibasis* и *Prioniodus honghuayuanensis*. Соответствует зонам *Paroistodus proteus* и нижней части зоны *Acodus longibasis* (*Prioniodus deltatus longibasis*), которые выделялись в разрезе Батырбай [Дубинина, 2000], и слоям с *Chiganodus parilis* (*Oelandodus sp. A*) — зоны *Acodus longibasis* (*Acodus deltatus longibasis*) в разрезе Памятник природы — 9706 бурубайтальской свиты [Tolmacheva et al., 2004]. Более позднее изучение кремнистых разрезов бурубайтальской свиты показало, что элементы *Acodus longibasis* появляются стратиграфически ниже, на уровне первого появления *Chiganodus parilis* и ниже первого появления *Paroistodus proteus*. Однако последний вид, особенно в начале его эволюционного появления, исключительно редок, а кроме того, может быть перепутан с элементами *Dreanodus* или другими видами *Paroistodus*. Хотя ранние *Paroistodus* пока в кремнях Казахстана неизвестны, они встречаются в Балтоскандии, Северном Китае и Австралии, и не исключено, что они присутствуют и в глубоководных отложениях Казахстана, но не распознаются из-за их редкости и сложно определения в кремнях.

Новая зона *Acodus longibasis* выделяется во избежание возможной диахронности определения возраста по нахождению *Paroistodus proteus*. Кроме номинального таксона комплекс зоны характеризуется видами *Decoriconus peselephantis* и *Chiganodus parilis*, *Kallidontus corbatoi*, *Dreianodus arcuatus, Tropodus sp.*, *Dreianodus reclinatus, Paroistodus proteus, Prioniodus sp.*, *Oistodus sp.* и *Dreianodus reclinatus*. Вопрос о корреляции нижней границы зоны достаточно сложен и неоднозначен. В Канадской Арктике *Acodus longibasis* появляется в верхней части зоны *Paroistodus proteus* [Pyle, Barnes,
2002]. В Австралии, возможно, они появляются чуть ниже в средней или нижней части этой зоны [McTavish, 1973]. В Казахстане первые элементы Acodus, в том числе и Acodus longibasis, появляются вместе с Kallidontus corbatoi и Tropodus australis, и, как уже отмечалось, раньше первого появления Paraistodus proteus. Вид Tropodus australis в Балтоскандии появляется в нижней части зоны Paraistodus proteus ниже основания гранитовой зоны Tetragraptus phylograptoides [Lofgren, 1993]. Таким образом, можно утверждать, что либо первое появление Paraistodus proteus в кембрийских фациях Казахстана наблюдается позже, чем в других регионах, либо фауна Acodus появляется здесь раньше. Поскольку в Австралии также отмечается более раннее появление Acodus longibasis, чем в Канадской Арктике, то наиболее вероятно последнее предположение.

Нижняя граница зоны Acodus longibasis в Казахстане сопоставляется с уровнем в верхней части зоны Paltodus deltifer Балтоскандии, ниже основания зоны Paraistodus proteus. Интересно, что вид Oelandodus elongatus, который в разрезах Балтоскандии появляется позднее вида Paracordylodus gracilis в верхней части зоны Paraistodus proteus [Lofgren, 1993], на уровне основания флюсогенного яруса, ниже первого появления Acodus в Казахстане наблюдается позже, чем в других регионах, либо фауна Acodus появляется здесь раньше. Это указывает либо на диахронность яруса, в Казахстане появляется раньше этого вида. Это опознается в кремнях на поверхностях нарушений и легко распознается даже в непредставительных коллекциях, в том числе и Protimegurus и Scolopodus sp., в пределах этой зоны появляются первые представители рода Protopanderodus.

Этот вид описан из относительно мелководных известковых свиты Хонгъуан (Honghuayuan) провинции Гуйчжоу (Guizhou) Южного Китая в интервале, коррелируемом с нижней частью зоны Prioniodus elegans Балтоскандийской ко-

нодонтовой шкалы [Zhen et al., 2005]. В разрезе Ньютонфилдена похожие формы (Prioniodus oepikus (McTavish, 1973)) встречаются также в комплексе с Paracordylodus gracilis и Paraistodus proteus [Stouge, Bagnoli, 1988].

Нижняя граница зоны Prioniodus honghuayanensis может быть условно сопоставлена со средней частью подзоны O. elongatus / P.? deltatus зоны Paraistodus proteus Балтоскандии, на стратиграфическом уровне расположенным чуть выше нижней границы флюсогенного яруса, которая определяется первым появлением гранитолита Tetragraptus approximatus, а по конодонтам проходит в низах зоны O. elongatus / P.? deltatus [Bergström et al., 2004].

Зона Prioniodus elegans выделена в разрезе Памятник природы бурунбаитской свиты — 9706. Зона рассматривается в интервале от первого появления Prioniodus elegans до первого появления Oepikodus evae. Вид Prioniodus elegans хорошо опознается в кремнях на поверхностях нарушений и початках переднего отростка у M и S элементов. В комплексе помимо проявляющих видов из нижележащей зоны входит Protoirioniodus iaiiliosus, также морфологически характерный вид, что позволяет достаточно четко определить нижнюю границу зоны. Основание зоны хорошо коррелируется с одноименной зоей Балтоскандии и Ньютонфилдена [Stouge, Bagnoli, 1988; Lofgren, 1993; Mannik, Viira, 2012].

Зона Oepikodus evae в полном объеме выделена в разрезе бурунбаитской свиты в баритовом карьере и охватывает интервал от первого появления Oepikodus evae до резкого доминирования в комплексах элементов Periodon flabellum. Для зоны характерен богатый и разнообразный комплекс, включающий Costiconus sp., Protopanderodus gradatus, Paracordylodus gracilis, Prioniodus elegans, Chiganodus partitus, Bergstroemognathus extentus, Lundodus gladiatus, Kallidontus corbatoi, Drepanodus arcuatus, Oelandodus elongatus, Paraistodus proteus, Scolopodus sp., Oepikodus cf. O. pincipallyensis, Drepanodus reclinatus и Periodon primus.

Нижняя граница зоны распознается условно, так как в изученных разрезах не удалось получить ее полную смкемость с нижележащей зоной. В разрезе Памятник природы — 9706 зоны Oepikodus evae соответствует несогласие, а в разрезе Баритовый карьер на этом уровне было недостаточно детальное опробование. Кроме того, стратиграфически нижняя граница этой зоны выявлена переходные формы Oepikodus cf. O. evae, что не дает возможности четко определить положения границы в разрезе. В связи с этим точная корреляция нижней границы Oepikodus evae, наблюдаемая
в Казахстане с другими регионами, становится несколько неопределенной. Тем не менее появление *Oepikodus evae* сопоставляется с нижней границей зоны *Oepikodus evae* в Балтоскандине и других регионах. Этот уровень — один из самых хорошо распознаваемых и прослеживаемых в ордовике, так как *Oepikodus evae* единовременно появляется на всех континентах (кроме Сибирской платформы), что считается отражением эвстатического трансгрессивного события [Barnes in Webby, 2004].

Зона Periodon flabellum / Periodon macrodentatus

выделена в разрезе бурбуитайской свиты (40—60 м) в баритовом карьере и определена в интервале от массового появления элементов *Periodon flabellum* до первого появления *Paraistodus horridus*. Помимо номинальных видов, которые обычно составляют до 90% всего комплекса, в небольшом количестве встречаются виды *Cornuoidea longibasis*, *Decriconus peselephantis* s.l., *Paraistodus sp.*, *Proto-panederosus gradatus*, *Drepanodus arcuatus*, *Drepanodus reclinatus*.

Основание зоны *Periodon flabellum/Periodon macrodentatus* сопоставляется с нижней границей дапинского яруса, но точное соответствие этих стратиграфических уровней — один из спорных вопросов конodontовой биостратиграфии в Казахстане. Нижняя граница дапинского яруса определена по появлению вида *Baltoniodus triangularis* в разрезе Хуанхучан (Huanghuachang) Южного Китая [Wang et al., 2005]. В Казахстане присутствие представителей этого рода, упомянутых в работах разных специалистов [Курковская, 1985; Двойченко, Абаймова, 1986 и др.], не подтверждается данными автора. А. Жилкайдаров из кремней балгашокинской свиты определил *Baltoniodus navis* [Zhilkaidarov, 1998], но эти элементы скорее относятся к *Prioniodus elegans*. У М элемента наблюдается зубчатость на переднем отростке, что не характерно для *Baltoniodus navis* [Zhilkaidarov, 1998: Fig. K], а у Па элемента — крупная равномерная зубчатость на заднем и боковом отростках [Zhilkaidarov, 1998: Fig. J]. У соответствующих элементов *Baltoniodus navis* зубчики на заднем отростке, как правило, значительно меньше.

Присутствие *Baltoniodus* в Восточной Гондване также вызывает сомнение [Zhen et al., 2009, 2011]. Как S элементы вида *Baltoniodus*? sp., судя по приведенным изображениям, в дарривильских отложениях Новой Зеландии определены элементы рода *Fahraeusodus* [Zhen et al., 2009], а как Р элементы — элементы какого-то морфологически примитивного платформенного рода. Виды *Baltoniodus alobathus* и *Baltoniodus prevariabilis*, описанные из дарривильских отложений Тарима [Zhen et al., 2011], также, возможно, относятся к другому, сходному с *Baltoniodus* роду. Кроме того, все элементы *Baltoniodus* в странах Восточной Гондваны были найдены в дарривильских отложениях.

В Казахстане разрез кушецинской свиты является единственным разрезом пограничного интервала верхней части флюсого яруса нижнего ордовика и нижней части дапинского яруса среднего ордовика, где встречаются конодонты совместно с граптолитами и устанавливается соответствие между зональными границами этих групп фауны. Граптолиты встречаются как в терригенных, так и кремнисто-терригенных породах разреза, характеризуют практически весь интервал кушецинской свиты, разнообразны и относительно хорошо изучены [Дубинина и др., 1996а].

В нижней части свиты до 200 м разреза встречены *Didymograptus protobifidus*, с 220 по 273 м отмечаются находки *Expansograptus* cf. *E. hirundo*. В богатом граптолитами пласте на 300 м сильнобочноевляется состав ассоциации, в которой появляются *Isograptus maximus* и *Isograptus maximodivergens*, характерные уже для дапинского яруса [Chen et al., 2009].

Примерно на этом уровне изменяется состав конodontных комплексов. С 250 м разреза исчезают *Oepikodus intermedius* и *Acodus* sp., в изобилии встречающиеся в нижней части разреза, и начинают преобладать элементы *Periodon flabellum* и *Periodon macrodentatus* (до 90%), кроме которого встречаются элементы родов *Drepanodus* и *Paraistodus*. Таким образом, нижняя граница дапинского яруса в разрезе соответствует нижней границе акме-зоны *Periodon flabellum/Periodon macrodentatus*.

Основание акме-зоны *Periodon flabellum/Periodon macrodentatus* прослеживается во всех кремнистых разрезах Казахстана. Так, в разрезе баритового карьера между 30 и 40 м исчезает таксонахомически разнообразная фауна зоны *Oepikodus evae*, насчитывающая 16 видов, и появляется комплекс с доминированием до 70% *Periodon flabellum* и *P. macrodentatus*.

В этом стратиграфическом интервале в других регионах также наблюдается увеличение доминантности в конodontовых сообществах. В разрезе района Вестерготланда резкое увеличение относительного количества *Periodon flabellum* приходится на верхи зоны *Baltoniodus triangularis* или на начало *B. navis* [Bergström, Lofgren, 2009]. В более мелководных отложениях Ленинградской области (Россия) [Tolmacheva, 2001] и в Норвегии [Rasmussen, 2001] на этом же стратиграфическом уровне увеличивается количество элементов *Drepanistodus*. Увеличение относительного коли-
чества элементов *Periodon flabellum* в комплексах отмечается и в глубоководных отложениях западного Ньюфаундленда и Южного Китая [Johnson, Barnes, 1999; Wu et al., 2014]. В целом имеющиеся данные показывают, что общее снижение разнообразия конодонтовых фаун и появление доминантных сообществ в дапинское время носит глобальный характер.

Детальное рас пространение конodontов в пределах зоны *Periodon flabellum / Periodon macrodentatus* неизвестно. В связи с этим нижняя граница дарривильского яруса по конodontам в кримских отложениях не распознается и приходится где-то на верхнюю часть описываемой зоны.

Зона Paroistodus horridus выделена в разрезе бурбайтальской свиты в баритовом карьере как интервал от первого появления *Paroistodus horridus* до устойчивого пребывания в комплексе элементов *Periodon aculeatus*. В составе комплекса встречаются *Periodon macrodentatus, Periodon aculeatus, Spinodus spinatus, Cornuodus longibasis, Fahraeusodus marathonomensis, Decoriconus peselephantis s.l., Anserella longicuspica, Histiodella sinuosa, Protopanderodus sp., Drepanodus arcuatus, Drepanodus reclinatus*.

Нижняя граница зоны *Paroistodus horridus* соответствует с серединой зоны *Lenodus variabilis* на стратиграфическом уровне выше основания дарривильского яруса (бышая нижняя граница лланвинского яруса).

Зона Periodon aculeatus наиболее хорошо выделяется в разрезе юрской свиты (Боскуль-Торктулуский район) в интервале от массового появления *Periodon aculeatus* до первого появления *Pygodus serra*. Этот стратиграфический интервал почти во всех изученных местонахождениях Казахстана представляет сильно глинистыми яшмами и кремнями (бурубы-байтинские, юрская, казыкская свиты), нередко тufsами, поэтому полный состав комплекса этой зоны не выявлен. В Южном Китае относительное количество доминирующих видов *Periodon aculeatus* в дарривильском ярусе наблюдается в других палеобассейнах.

Акме-зона *Periodon aculeatus* легко прослеживается во всех криминских разрезах соответствующего возраста. Как и в случае дапинского увличения доминантности видов *Periodon flabellum* и *Periodon macrodentatus*, резкое пребывание элементов *Periodon aculeatus* в дарривильском ярусе наблюдается и в других палеобассейнах. Так, в Южном Китае относительное количество доминирующего вида увеличивается начиная с верхов зоны *Microzarkodina hagetiana* и продолжается до появления первого *Pygodus* [Zhang, 1998]. В разрезах Западного Ньюфаундленда слоу 14 (нижняя часть дарривильского яруса) также преобладают элементы *Periodon aculeatus* [Pohl, 1994]. Численное доминирование элементов *Periodon* наблюдается и в известняках найманской свиты хр. Чингиз Восточного Казахстана, которые сопоставляются с нижней частью зоны *Eoplacognathus suecicus* Балтоскандии.

В целом нижняя граница зоны *Periodon aculeatus* коррелируется со стратиграфическим уровнем в центральной части зоны *Eoplacognathus pseudoplanus* Балтоскандии и с верхами зоны *Histiodella levis* мелководной шкалы.

Зона Pygodus serra лучше всего определяется в казыкской свите Северного Прибалхашья, где разрезы, охватывающие этот стратиграфический интервал, наиболее детально описаны. Верхняя часть дарривильского яруса бурбайтальской свиты сложена преимущественно непрерывными кремнями и кремнистыми алевролитами, а конodontы там известны только на редких стратиграфических уровнях. Зона рассматривается
в интервале от первого появления Pygodus serra до первого появления Pygodus anserinus. Зона легко распознается во всех разрезах соответствующего возраста из-за характерной морфологии вида-индекса. Помимо Pygodus serra в комплексе встречаются Drepdanodon sp., Periododon aculeatus и Protopanderodus sp. Нижняя граница зоны в Казахстане сопоставляется с основанием соответствующей зоны в Балтоскандии.

Зона Pygodus anserinus устанавливается в разрезе ержанской свиты. Также отмечается в казыкской свите Северного Прибалхашья. Интервал зоны рассматривается от первого появления Pygodus anserinus до совместного появления элементов Hamarodus europaeus и Periododon grandis. Слабоизученный, а в связи с этим таксономический бедный комплекс зоны включает Drepanodus arcuatus, Periododon aculeatus и Protopanderodus sp. Нижняя граница зоны сопоставляется с однородной зоей Балтоскандии. Нижняя граница верхнего ордовика, проходящая внутри зоны Pygodus anserinus [Bergström et al., 2000], по конодонтам из кремнистых отложений Казахстана не опознается.

Слои с Periododon grandis установлены в разрезе ержанской свиты Башекульской зоны. Определяются совместным распространением Periododon grandis, Hamarodus europaeus и Scabardella altipes. Кроме того, эти слои распознаются в кремнях кузьлкаинской свиты Юго-западного Предчингизья [Tolmacheva et al., 2009], в джаманшурийских песчаниках в Северном Прибалхашье [Курковская, 1985].

Все изученные комплексы конодонтов с P. grandis имеют примерно один и тот же таксономический состав с доминированием номинативного вида и очень незначительной примесью прочих таксонов. Кроме уже упомянутых Scabardella altipes и Hamarodus europaeus, встречаются неопределенные до вида элементы Drepanodus и Protopanderodus. В двух из трех изученных местонахождений были найдены редкие элементы Pygodus anserinus. В опубликованных списках других исследователей упоминаются P. grandis, Drepanodus sp. и Protopanderodus sp., а также и другие виды, существование которых в Казахстане пока не подтверждено [Никитин, 2002]. Так, элементы видов Panderodus gracilis, Dapsilodus mutatus и Drepanodistacodus victrix по общему облику очень близки к элементам S. altipes. Все они имеют высокое и уплощенное с боковых сторон основание, а также ребро или желобок, расположенный по центру боковой стороны. В небольших коллекциях, когда элементы видны только с одной стороны, S. altipes могли быть отнесены к другим видам. Это же касается H. europaeus, который, кроме коллекций автора, был найден в яшмах талдыкенской свиты [Никитин и др., 1999]. Этот вид легко распознается только при наличии в коллекции Р элементов, тогда как S и М элементы практически идентичны соответствующим элементам рода Periododon.

Все виды из кремней этого стратиграфического уровня имеют длительный интервал распространения, включающий почти весь верхний ордовик. Наиболее долгоживущим таксоном является S. altipes, находки которого известны с верхов среднего ордовика [Rasmussen, 2001; Dzik, 1994]. Появление типичного P. grandis отмечается в самых верхах сандбийского яруса, в верхней части зоны Amorphognathus taeraensis, близко к основанию зоны Diplacanthograptus caudatus [McCracken, 2000; Goldman et al., 2007]. Первые находки H. europaeus в Восточной Гондване приурочены к верхам сандбийского яруса [Agematsu et al., 2007]. В разрезах Северной Европы этот вид появляется только в катийское время [Dzik, 1994]. Заканчивают свое существование все три рассматриваемых вида более или менее одновременно во второй половине хирнанта. Представители родов Protopanderodus и Drepanodus характерны почти для всего ордовика.

Совместное нахождение P. anserinus ни с P. grandis, ни с H. europaeus ранее ни где не отмечалось. P. anserinus характерен для более древних отложений верхнего дарривилия и нижнего сандбии, где присутствует вместе с предковым для P. grandis видом P. aculeatus. Находки P. anserinus с более молодыми конодонтами могут объяснить его переотложениями, либо реальным соприкосновением видов в результате более длительного существования P. anserinus в океанических условиях. Поскольку элементы P. grandis были встречены вместе с P. anserinus в нескольких местонахождениях ержанской свиты и кузьлкаинской серии, то их переотложение маловероятно.

Комплекс, включающий P. grandis, S. altipes и H. europaeus, мог существовать в очень широком возрастном диапазоне от верхов сандбийского до конца хирнантского времени, присутствие P. anserinus сужает его возрастной интервал до верхов сандбийского яруса.

Опыт поиска конодонтов в кремнях Казахстана показывает, что комплексы конодонтов определенного возраста встречаются намного чаще, чем другие. Это связано с тем, что конодонты в отложениях ордовика распределены очень неравномерно, и содержание конодонтов на некоторых стратиграфических уровнях принципиально превышает их среднее количество.
в породе. При поиске конодонтов в высоких и отдельных выходах первыми обнаруживаются как раз богатые конодонтами кремни. Эта же особенность была замечена при изучении конодонтов в верхнеордовикских терригенных слоях Северной Америки, где наиболее богатые конодонтами кремни приурочены к пограничному интервалу дарривильского и сандбийского ярусов и к самым верхам сандбийского [Leslie et al., 2000]. Предполагается, что эти уровни отражают время наиболее высокого стояния океанических вод, когда в осадки поступало меньше терригенного материала [Leslie et al., 2000]. Это время осадок обогащался конодонтами элементами, которые становятся более доступными для обнаружения. В пограничном интервале сандбийского и катийского ярусов чуть ниже подошвы зоны Diploclathrogaius caudatus в разрезах Арканзаса и Оклахомы заметно увеличено количество элементов P. grandis, S. alipes и Amorphognathus tvaerensis Bergström [Leslie et al., 2000]. Возможно, что появление пластов кремней в песчаниках и алевролитах верхней части ержанской свиты и появление окремнения в верхах тонкотерригенной кызылкаинской серии связано с тем же событием и, следовательно, возраст слоев с P. grandis, где не найден P. anselurus, может считаться позднесандбийским. Нижняя граница слоев P. grandis, таким образом, сопоставляется с основанием илледерского горизонта Балтоскандии (зона Diploclathrogaius multifidens) в основании зоны Baltoniodus gerdæ.

БИОСТРАТИГРАФИЧЕСКАЯ ШКАЛА МЕЛКОВОДНЫХ ОТЛОЖЕНИЙ

Как уже указывалось выше, в Казахстане до настоящей работы была разработана единственная зональная последовательность на основе конодонтов из разреза Батырбай гор Малого Кара-тау [Дубинина, 2000] (рис. 35). Этот достаточно полный карбонатный разрез охватывает только нижний ордовик. Конодонты из более молодых карбонатных пород в Казахстане и Северной Киргизии были известны только из отдельных местонахождений, и анализ их биостратиграфического положения не рассматривался. Однако необходимость датирования и уточнения возраста карбонатных толщ требует биостратиграфической шкалы по конодонтам именно из мелководных отложений, которые имеют более высокий уровень эндемичности, чем конодонты из глубоководных кремнистых фаций. Как показал опыт изучения конодонтов в регионе, они нередко позволяют уточнить возраст отложений, в том числе тех, где были изучены трилобиты и граптолиты, как, например, в случае известников бестамакской свиты. К настоящему времени накопилось достаточное количество данных по отдельным карбонатным местонахождениям Казахстана для создания первой биостратиграфической последовательности по конодонтам из относительно мелководных фаций.

Уже отмечалось, что таксационный состав конодонтов из карбонатных пород Казахстана сильно отличается от комплексов из кремнистых отложений [Дубинина, 2000; Zhylkaidarov, 1998]. Несмотря на то что в конодонтовом комплексе из известников присутствуют и океанические виды, характерные для кремней, их количество прямо зависит от глубоководности карбонатных фаций. В мелководных, водорослевых и песчаных известняках доля океанических видов минимальна (например, вулканогенная толща из Урумбайского района Северного Казахстана). Поэтому зональная шкала, построенная на распределении конодонтов в кремнистых разрезах, несмотря на ее хороший корреляционный потенциал, в карбонатных отложениях часто не работает.

В связи с этим шкала для относительно мелководных отложений в значительной мере основывалась на мелководных видах, характерных для большей части изученных местонахождений. В качестве номинальных видов выбирались таксоны, встречающиеся в большом количестве и легко опознаваемые даже при плохой сохранности фауны. При отсутствии характерных мелководных конодонтов определение биостратиграфического подразделения строилось на открытоморских видах. Необходимо отметить, что зональная шкала карбонатного разреза Батырбай [Дубинина, 2000] построена на океанических таксонах и сходна со шкалой глубоководных отложений. Применимость такой шкалы ограничивается достаточно глубоководными отложениями.

Предложенные для мелководных отложений биостратиграфические подразделения имеют ранг слоев с фауной в связи с отсутствием смыкаемости границ. К достоинству шкалы относится легкость ее использования для определения возраста и высокий коррелятивный потенциал внутри мелководных отложений палеобассейна, к недостаткам — недостаточная обоснованность и относительно слабая разрешающая способность.

Общее распространение конодонтов в карбонатных отложениях показано на рис. 38.

Слои с Cordylothis multiderem в настоящее время известны только в разрезе Батырбай Малого Кара-тау, где помимо номинального таксона отмечено присутствие элементов Iapetognathus sp., а также
долгоживущих форм из нижележащих отложений *Eoconodontus notchpeakensis*, *Hirsutodontus* sp. и *Variabiloconus* sp. Больше нигде на территории Казахстана одновозрастные карбонатные отложения не изучены. Выделенные слои сопоставляются с одноименными зонами глубоководных фаший Казахстана и Балтоскандии. Однако надо отметить, что разрез Батырбай — это единственное местонахождение таксонов родового уровня, чей вид *lapetognathus fluctivagus* Nicoll, Miller, Nowlan, Repetski et Ethington определяет в настоящее время нижнюю границу ордовикской системы [Cooper et al., 2001].

Слои с Cordylodus angulatus выделены в кремнисто-карбонатной толще верхнего кембрия — раннего ордовика на правом берегу р. Копа хребта Чингиз (Казахстан). Вид *Cordylodus angulatus*, являясь космополитным, встречается обычно в большом количестве в широком спектре фац. Он характерен как для кремнистых глубоководных отложений бурубайтальской свиты в Казахстане, так и для мелководных песчаных толщ восточной части Балтоскандии (Ленинградская область и Эстония). В комплекс слоев входят *Hirsutodontus* sp., *Loxodus* sp., а также многочисленные элементы параконодонтов, которые продолжают существовать с верхнего кембрия. Слои с *Cordylodus angulatus* на территории западной части Центрально-Азиатского пояса, кроме хребта Чингиз, были обнаружены в кампакской свите Горного Алтая. Слои сопоставляются с зоной *Cordylodus angulatus*, выделяемой практически на всех континентах в разных фашиях [например, Попов и др., 1989; Pyle, Barnes, 2002] (рис. 39).

Слои с Paltodus выделяются в нижней части агалатасской свиты хр. Кендыктаа Южного Казахстана. В достаточно разнообразный комплекс входят виды *Colaltoconus* sp., *Drepanodus* sp., *Rossodus* sp., *Variabiloconus* sp. и ряд экзотических неопределенных форм. В изученных пробах наблюдается сильная изменчивость диагностических элементов *Paltodus*, выраженная в непрерывном переходе форм с коротким задним отростком к длинным. Определение видовой принадлежности видов *Paltodus*, которые различаются по длине заднего отростка, достаточно затруднительно в этом случае и требует специального изучения и ревизии этого рода. Поэтому род *Paltodus* s.s., распространение которого ограничено только верхним тренадаком, рассматривается как единый номинальный таксон для обозначения биостратиграфического подразделения этого возраста. Верхняя часть этого биостратиграфического подразделения также отмечается в разрезе маматских известняков хр. Чингиз, где вместе с *Paltodus cf. P. pristinus* (вид с наименьшей длиной заднего стержня) встречена *Lenaeodus cf. L. bifidus, Scolopus* sp. и *Acodus* sp. Нижняя граница слоя с *Paltodus* словно соответствует нижней границе зоны *Rossodus / Paltodus* глубоководной шкалы Казахстана и зоны *Paltodus deltifer* Балтоскандии.

Слои с Acodus? chingizicus выделяются в известняках маматской свиты хр. Чингиз. Это единственный изученный местонахождение с коно-
донтами этого возраста. В комплекс слоя помимо номинального вида входят Acodus sp. 2, Drepanodus arcuatus и Paroistodus cf. P. proteus. Встречаются, видимо, и переотложенные элементы Cordyodus angulatus. Нижняя граница зоны Acodus sp. 2 условно коррелируется с нижней границей зоны Acodus longibasis глубоководной шкалы Казахстана и сопоставляется с уровнем ниже основания зоны Paroistodus iroteus Балтоскандинии. Соответствует зо-

не Paroistodus proteus и нижней части зоны Acodus longibasis разреза Батырбай [Дубинина, 2000]. Стратиграфический интервал слоев охватывает нижнюю границу флюю границу флюорского яруса.

Слои с Acodus sp. А выделены в кенташ-

ской толще западной части Киргизского хреб-

та, единственно изученном местонахождении этого возраста. Комплекс конодонтов в этом биостратиграфическом подразделении таксо-

номически разнообразен и помимо номиналь-

ного таксона включает виды Bergstroemognathus
<table>
<thead>
<tr>
<th>ГОМБИЙСКАЯ</th>
<th>СИСТЕМА</th>
<th>ОРДОВИСКАЯ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>НИЖНИЙ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ФЛЮСКЛЬ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ГАМБОРДАМ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>БАТУЧЕВСКАЯ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>БАРАЗОВСКАЯ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>БАГАКЕНСКАЯ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Слои с Oepikodus evae выделяются в ажкельской свите Чу-Илийских гор Центрального Казахстана. Помимо номинального таксона в комплекс слоев в типовой местности этого биостратиграфического подразделения входят Oelandodus elongatus, Tropodus sweeti, Lundodus gladiatus, *Periодон флабеллум*, Juanognathus variabilis, Drepanodus reclinatus, Cornuodus longibasis, Bergstroemognathus extendus и ряд видов, определенных в открытой номенклатуре. Наличие и доминирование *Oepikodus evae* четко свидетельствует о возрасте слоев и их соответствии одноименной зоны глубоководных отложений Казахстана и Балтоскандии. Карбонаты ажкельской свиты являются единственным изученным местонахождением в Казахстане верхней части флошного яруса нижнего ордовика.

Вид *Histiodella levis* является хорошим биостратиграфическим маркером, так как характерен для дарривильских карбонатных отложений нижней части дарривила в Казахстане и встречается вместе с сопутствующим комплексом в караканской свите и нижней части зоны Гинзга в Текелийского района в узубакской свите Чу-Илийских гор и в найманской свите хр. Чингиз. Номинальный таксон не был обнаружен только в достаточно бедной коллекции из верхней части кенташицкой толщи Северной Киргизии. В более глубоководных и более молодых известняках этого стратиграфического интервала (найманская свита) наблюдается доминирование элементов *Periодон aculeatus* и *Periодон macrodentatus*.

Слои охватывают стратиграфический интервал от середины зоны *Lenodus variabilis* до зоны *Eoplastacognathus suecicus* зональной конодонтовой шкалы Балтоскандии, а также зону *Paroistodus horridus* и нижнюю часть зоны *Periодон aculeatus* глубоководной шкалы Казахстана (рис. 39).

Слои с Pygodus serra выделяются в известняках терригенно-карбонатной толщи хр. Окпекты, хр. Чинги. В этом преимущественно терригенном разрезе в карбонатных прослоях нижней части толщи распознаются слои с *Histiodella? levis*, а в верхах нижней части появляются прослои известняков, содержащих, помимо *Pygodus serra*, многочисленные элементы *Periодон aculeatus* и *Periодон aculeatus* sp. Это единственное местонахождение в регионе, где обнаруживается конодонтовый комплекс этого возраста. Слои с *Pygodus serra* сопоставляются с одноименной зоной глубоководной шкалы Казахстана и одноименной зоной Балтоскандии.

как в бестамакской свите верхний возрастной предел комплекса — средний сандбий определяют граптолиты Nemagruptus gracilis и Climacograptus bicornis. Кроме того, совместное присутствие видов Periodon aculeatus и Periodon grandis (или ранних представителей Periodon grandis) характерно для середины сандбия. Слои сопоставляются с верхней частью зоны Pygodus anserinus — нижней частью зоны Periodon grandis глубоководной шкалы Казахстана, а также со средней частью зоны Amorihognathus tvaerensis Балтоскандинии.

Слои с Yaoxianognathus выделяются в ку- лунбулакской свите хр. Тарбагатай. В едини- ственном местонахождении этого возрас- та в Казахстане вместе с номинальным видом встречаются Phragmodus undatus, Periodon grandis, Belodina compressa, Belodina sp. 1, Besselodus sp., Paroistodus? P. nowlani, Chirognathus? cliefdenensis, Belodina sp. 2, Panderodus sp. С. Наибольшей корреляционный потенциал здесь имеет вид Yaoxianognathus sp., который был выбран в качест- ве номинального вида этого биостратиграфического подразделения. Поскольку все эти виды имеют широкое стратиграфическое рас- пространение и характерны практически для всего катийского яруса, то слои сопоставляются с верхней частью зоны Periodon grandis глубоководной зональной шкалы Казахстана и зоной Phragmodus undatus восточной части Балтоскан- дии (Ленинградская область).
БИОГЕОГРАФИЧЕСКОЕ РАЙОНИРОВАНИЕ
ЗАПАДНОЙ ЧАСТИ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА
ПО КОННОДОНТАМ И ПАЛЕОГЕОГРАФИЧЕСКИЕ РЕКОНСТРУКЦИИ

Биогеография — наука, изучающая закономерности географического распространения живых организмов. Если биогеография оценивает специфичность и распределение биоты, исходя из знания параметров окружающей среды и современной географии бассейнов, то палеобиогеография, наряду с этими вопросами, позволяет решить и обратную задачу — определять расположение палеобассейнов по закономерностям распространения древних организмов. Палеобиогеография базируется на методах актуализма, используя модели и выводы современной биогеографии, что в совокупности с фацальным анализом дает основу как для палеогеографических реконструкций прошлого, так и для решения других задач, в частности выявления образа жизни древних организмов. Палеобиогеография стояла у истоков определения географического положения палеоконтinentов, и до сих пор для некоторых регионов биогеографический метод превышает точность палеомагнитных, геологических и геохимических исследований.

Для биогеографии современных и ископаемых морских организмов применяются достаточно сходные методы и подходы, а в ее основу закладываются единицей первичные данные — таксономический состав и соотношения таксонов в точке наблюдения.

Современное биогеографическое районирование прибрежных зон и шельфа в настоящее время хорошо разработано. В этих областях Мирового океана выделяются 12 царств, 62 провинции и 232 экорегиона (программа NOAA http://www.lme.noaa.gov) на основе биотических (биохорических) параметров, опирающихся на анализ распространения таксонов (семейств, родов, видов) [Briggs, 1974, 1995; Sherman, Alexander, 1989; Sherman et al., 2005, и др.]. Царства отличаются сходством гидробионтов высшего таксономического ранга. В провинциях эндемизм проявлен на видовом уровне, провинции делятся на экорегионы (=биомы).

В отличие от шельфовых областей биогеографическое районирование современной пелагиали до сих пор является сложной и во многом нерешенной задачей. Здесь характеристики фауны меняются в трехмерном пространстве как по горизонтали согласно климатическим поясам, течениям и месту на латеральном профиле суши—пелагиа, так и по глубине, образуя объемные подразделения районирования. Широтная зональность в распространении морских пелагических, в том числе планктонных и некто-планктонных, животных, обусловленная наличием климатических зон, нивелируется в более глу-боких водных массах, приводя к максимальному однообразию абиссальной пелагической фауны.

Зависимость биогеографического районирования планктона в океане от гидрологических фронтов, зон конвергенции и дивергенции океана уже давно показана в работах К. В. Беклемишева и др. [Беклемишев, 1969]. В то же время состав планктонной фауны связан с температурным фактором. Для планктонных организмов наблюдается относительно четкая картина зависимости географического распространения биот от климатической зональности, определяемой широтой.

В высшей иерархической единице районирования Мирового океана, основанной на распространении систематических групп высшего порядка, выделяются три циркумглобальных царств (надобласти) — Бореальное, Тропическое и Нотальное. Дальнейшее разделение царств на области подчиняется широтным географическим зонам, согласно которым идет расспределение планктона. Однако благодаря эффективу «выселения» границы зон оказываются размытыми, т. е. все области разделены переходными полосами, населенными смешанными фаунами, в том числе переходные области разделяют пелагические и неритовые фауны. Ширина переходных зон может быть различна. Схемы районирования пелагиали по разным группам организмов
более или менее разработаны и отличаются в деталях, однако общее детальное районирование океанов отсутствует.

Все существующие на настоящее время палеобиогеографические построения по палеогеографическим группам фауны в той или иной степени основаны на тех же принципах, например [Hart, 2000]. Однако на специфике биогеографического районирования отложений палеобассейнов в разные эпохи в истории Земли влияют особенности сохранности, систематики, образа жизни разных групп ископаемых организмов, а также степень их изученности и неопределенность в интерпретации условий осадконакопления и расположения древних палеоконтинентов.

Ордовикские конодонты были пелагическими организмами, которые вели планктонный образ жизни. Они, скорее всего, были способны перестривать в толще воды, но не могли активно противостоять течениям и пересекать гидрологические барьеры. Только небольшая часть видов, возможно, обитала в придонных обстановках, что может быть выявлено биофациальным анализом конодонтовых комплексов в шельфовых отложениях. Так, если для пелагических форм предполагается большее географическое распространение и нахождение в широком спектре фаций, то нектобентосные формы должны быть более эндемичны и привязаны к определенным фациям. Детальные биофациальные построения требуют как качественной статистической основы, так и обширных конодонтовых коллекций, а также литофациального анализа отложений [Zhang et al., 2006]. Это редко может быть осуществлено на практике, в том числе из-за отсутствия каких-либо выдержанных фациальных профилей, где было бы возможно определение видов. В результате, хотя биофациальный анализ конодонтов давно привлекает внимание исследователей [Sweet, Bergström, 1984], в этом направлении сделано только первые шаги. Наиболее успешным и удачным объектом исследований биофаун конодонтов ордовика являются Ньюфаунленд [Stouge, 1984; Ji, Barnes, 1994; Pohler, 1994; Johnston, Barnes, 1999; Zhang, Barnes, 2004] и Канадская Арктика [Zhang et al., 2006 и др.] — это редкие исследования на платформе Янцзы Южного Китая [Zhang, 1998; Wu et al., 2014]. В то же время для Балтиоскандии, несмотря на большое количество конодонтовых коллекций, такие работы относительно менее успешны, главным образом из-за отсутствия общей интерпретации фациальных обстановок [Rasmussen, Stouge, 1995; Bagnoli, Stouge, 1997].

В результате всех проведенных работ большинство исследователей считают, что часть конодонтов были придонными обитателями, а многие виды вели пелагический образ жизни, наиболее вероятно занимая разные вертикальные ниши в толще воды [Pohler, 1994; Zhen, Percival, 2003; и др.]. Хотя биофациальный анализ не является целью данной работы, но показанное в ней широкое географическое распространение подвигающего большинства видов конодонтов и очень низкий уровень эндемизма конодонтовых фаун доказывает, что практически все конодонты Казахстана в ордовике обитали в пелагиали или неритовой области. Нектобентосный образ жизни может предполагаться только для наиболее мелководных видов.

Ордовикский период был временем максимального расхождения палеоконтинентов, которые преимущественно располагались в южном полушарии. Северное полушарие занимал океан Панталасса, отложения которого неизвестны (рис. 40). Современная глобальная палеогеография ордовика началась с исследований палеонтологов, которые на основании изучения трилобитов и брахиопод предложили палеогеографическое расположение для двух наиболее изученных континентов — Лаврентии и Балтики, а также кратонов, слагающих Гондвану [Spjeldnaes, 1961; Wilson, 1966; Cocks, Fortey, 1982]. Последующее сопоставление палеонтологических и палеомагнитных данных показало хорошую сходимость [Van der Voo, 1988], а дальнейшие работы Х. Скотиза [Scotese, McKerrow, 1990, 1991], дополненные и уточненные дальнейшими исследованиями, легли в основу наиболее убедительных и общепринятых в настоящее время реконструкций [Harper et al., 1996; Scotese, 2001; Cocks, Torsvik, 2002; Torsvik, Cocks, 2011].

Для уточнения расположения палеоконтinentов рассматриваются геологическое строение и тектоническое развитие регионов, общность геохимических особенностей и детритовых цирконов, а также палеонтологические данные [Schönlau, 1992; Erdtman, 2000; Robardet, 2002; Meissner et al., 1994; Dalziel, 1997; Wilde, 1991; Christiansen, Stouge, 1999; Webby et al., 2000; Fortey, Cocks, 2003]. Но основной и решающий вклад в глобальные палеогеографические реконструкции до сих пор вносят бентосные группы фауны — трилобиты и брахиоподы [Fortey, Cocks, 2003]. Пелагическая фауна используется редко и очень ограниченно [Servais et al., 2005].

Палеозой Казахстана в глобальных биогеографических реконструкциях для ордовикского времени рассматриваются как комплекс разобщенных террейнов, расположенных на значительных расстояниях между Балтикой, Сиби-
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Рис. 40. Палеогеографическая реконструкция для среднего ордовика, по [Scotese, 2001; Cocks et Torsvik, 2002; Agematsu et al., 2006] с дополнениями

ряю и Восточной Гондваной [Holmer et al., 2001; Fortey, Cocks, 2003; Popov et al., 2009]. Ранее на основе анализа геодинамики региона предлагалось линейное или также хаотично разобщенное расположение террейнов Казахстана, которые отделялись от Гондваны Туркестанским, а от Сибири Палеоазиатским океаном [Sengor, 1987; Sengor et al., 1993].

В последние годы активные палеомагнитные и геологические работы показали, что в ордовикское время часть Казахстана представляла собой докембрийский платформенный блок, который был вытянут в приэкваториальной области в широтном направлении, располагаясь на 8 и 10° ю. ш. [Bazhenov et al., 2003; Bazhenov et al., 2012; Дегтярев, 2012]. Фрагменты этого платформенного блока слагают Актау-Джунгарский, Кокчетавский и другие массивы. Расположенная восточнее (в современной структуре) Степняк-Северотяньшанская зона представляла собой активную окраину ордовикского океана, который продолжал свое развитие в силуре и девоне.

Однако во всех существующих в настоящее время реконструкциях отсутствует синтез биогеографических и геодинамических данных, поэтому в созданных моделях палеозоид Казахстана, которые часто противоречивы, имеется много вариантов расположения отдельных блоков относительно друг друга [Popov et al., 2009; Wilhem et al., 2012].

Согласно современным представлениям, Казахстан располагался между Восточно-Европейским и Сибирским палеократонами и террейнами Восточной Гондваны.

Восточно-Европейская платформа, или Балтика, северо-западную часть которой занимал Балтоскандийский палеобассейн, в ордовике был обособлен от других крупных палеократонов. В среднем – позднем ордовике началось сближение Балтики и Лаврентийско-Гренландского кра-tona, которое в начале силура завершилось формированием мегаконтинента Лавруссия [Ziegler, 1989; Torsvik et al., 1992].

Согласно палеомагнитным данным, Балтика в раннем ордовике находилась на 50–55° ю. ш. и постепенно продвигалась к северу, достигнув широты 30° к началу силурийского периода [Torsvik et al., 1992].

Сибирская платформа по палеомагнитным данным и геодинамическим реконструкциям в начале ордовикского времени располагалась на приэкваториальных широтах (0–30° ю. ш.), в развернутом по отношению к современному положению на 180°, и постепенно на протяжении ордовика продвигалась на север [Cocks, Torsvik, 2007; Метелкин и др., 2012]. По современным геологическим представлениям, Сибирский кра-ton располагался севернее, но примерно на той же долготе, что и Балтика.

Восточный край Гондваны занимал все южное полушарие, протягиваясь до 20° с. ш. К западному краю Австралии и Индии примыкало множество относительно меньших по размеру палеократонов и террейнов, в том числе Северный и Южный Китай, Тарим, Индокитай, Сибумасу и Западная Бирма [Webby et al., 2000]. Соотношение между этими отдельными палеократонами до сих пор является предметом дискуссии.

Развитие представлений о биогеографии конодонтов. С самого начала изучения ордовикских конодонтов обращает на себя внимание значительная разница между таксономическим составом фаун из центральной части Америки

Постепенное появление новых данных по конодонтам на разных континентах привело не только к увеличению числа биогеографических провинций, но и появлению стихийной иерархии биогеографических подразделений. Применение терминов «провинция (province)», «фаунистический регион (faunal region)», «область (realm)» специалисты по конодонтам использовали довольно условно. В большинстве работ биогеографическая область рассматривалась как большее подразделение, которое делится в свою очередь на провинции [Pohler, Barnes, 1990; Rasmussen, 1998].

гочисленные общие виды Dapsilodus viruensis, Paroistodus horridus, Ansellia spp., Periodon spp., Protoparistodon spp. и «Walliserodus» spp. Удаление этих видов из подсчетов коэффициента сходства Жаккара для местонахождений Ньюфаундленда, ранее относившихся к Северо-Атлантической провинции, выявило принципиальное отличие этой фауны от Балтоскандийской [Rasmussen, 1998]. Хотя предположения о том, что многие конодонты были пелагическими космополитами, высказывались и ранее [Sweet, Bergström, 1984], Ян Расмуссен был первый, кто четко сформулировал, что глубоководные окраины платформ были заселены пелагическими формами-космополитами, которые, примешиваясь к комплексам относительно более мелководноморских и менее «мористых» фаун, создают ложное впечатление о провинциальности самих платформ. Поэтому установить провинциальность фауны возможно только при удалении пелагических видов из биогеографического анализа и сравнении комплексов идентичных биофаун.

Однако единственной работой, в которой для сравнения позднеордовикских — сирийских фаун Лаврентии и Авалонии была использована идея о вычленении космополитных форм, были исследования по установлению времени захоронения Япетуса [Armstrong, Owen, 2002]. Хотя большинство специалистов уже давно считали, что виды широкого географического положения являются обитателями пелагиали [Stouge, 1984; Zhang, 1998], только после открытия в Казахстане и затем в Австралии кризисных пелагических отложений с конодонтами это стало очевидно [Tolmacheva et al., 2001; Murray, Stewart, 2001; Glen et al., 2004].

Изучение конодонтов из кризисных отложений Австралии привело к принципиально новому биогеографическому районированию ордовика, при котором виды космополитного распределения стали характеризовать отдельное биогеографическое царство [Zhen, Percival, 2003]. Согласно новой классификации к Северо-Атлантической биогеографической провинции относится океаническая область, а также холодноводная и умеренно-тепловодная, а океаническая — неразнообразной фауной широкого географического или пандемичного распространения [Zhen, Percival, 2003]. Все эти выводы не соответствуют полученным на настоящем времени новым фактическим данным, в том числе по конодонтам из кризисных отложений Казахстана.

Согласно новой классификации к Северо-Атлантической биогеографической провинции относится океаническая область, а также холодноводная и умеренно-тепловодная, а океаническая — неразнообразной фауной широкого географического или пандемичного распространения [Zhen, Percival, 2003]. Все эти выводы не соответствуют полученным на настоящем времени новым фактическим данным, в том числе по конодонтам из кризисных отложений Казахстана.

В тепловодных палеобассейнах, в том числе в Казахстане, граница между Мидконтинентальной и Северо-Атлантической провинцией относительно резкая и соответствует фациальному переходу от мелководных/карбонатных к глубоководным/карбонатно-терригенным отложениям. В то же время в относительно холодноводных фациях высоких широт переходная зона между этими провинциами значительно увеличивается. Так, в нижнем-среднем ордовике Балтоскандии виды космополитного распространения встречаются в самых мелководных фациях. Такая особенность создает видимость субмергации фауны — явления, которое отмечается на шельфах современных полярных океанов и заключается в обитании бентосных полярных видов на больших глубинах преимущественно в теплых водах.

Мелководноморская область — территория шельфа и неритовой зоны, где преобладают карбонатные фашии, а океаническая — область развития пелагических кремнистых и терригенных отложений внешней кромки шельфа, континентальных подножий и абиссальных равнин. Авторы предложенного районирования определяют океаническую область с глубин, превышающих 200 м [Zhen, Percival, 2003]. В океанической области ими были выделены условно также все три зоны — тепловодная, умеренно тепловодная и холодноводная, несмотря на то что все известные палеобассейны с кризисным осадконакоплением и конодонтами находятся на низких широтах, то есть в тепловой зоне.
Попытку объяснить это явление на примере конодонтов верхнего кембрия и нижнего ордовика сделала С. В. Дубинина, которая интерпретировала находки одних и тех же конодонтов в относительно холодных водах Балтоскандинии и теплом Казахстанском океане существованием ряда видов конодонтов ниже уровня постоянного термоклина [Дубинина, 2000]. Согласно ее предположению, глубина этого гидрологического рубежа была значительно меньше в Балтоскандинии, чем в Казахстане, что позволило проникать холодноводным конодонтам в мелководные фации. Однако, согласно современным данным, распространение пелагических планктонных фаун в значительно большей степени контролируется давлением и пищевыми ресурсами, чем температурой, например [Carney, 2005]. Реальной и ощутимой субмергенции планктонных фаун в отличие от бентосных не наблюдается.

Уже более десяти лет известно, что ряд таксонов, которые определяют облик Северо-Атлантической провинции, имеет космополитное распространение и характерен для глубоководных отложений приэкваториальных морей, а также фаций всех глубин в холодноводных бассейнах (рис. 42). Эти виды большое значение имеют
для межрегиональной корреляции и определения возраста пород, но вредны для биогеографических построений, придавая любым относительно глубоководным сообществам облик Северо-Атлантической провинции.

Для того, чтобы проводить биогеографическое районирование, которое должно строиться на биохориях эндемических и ограниченно распространенных таксонов, надо знать, какие таксоны является космополитными.

До настоящего времени состав пелагических открытых морских фаун был практически неизвестен. Во всех карбонатных отложениях наиболее глубоководных частей внешнего шельфа и континентального склона присутствует смешанный комплекс конодонтов, в котором отмечаются как океанические виды, так и виды неритовой области, характерные для данной климатической зоны или палеобассейна (рис. 42). Более того, из-за разной степени изученности конодонт из-за сложности выделения конодонтов Дубинина, 2000, но даже в этих местонахождениях Рыжанцев, 2008 и Казахстан [Zhylkaidarov, 1998; Armstrong et al., 2001], Южный Урал [Dubinina, 2001; Glen et al., 2004], каледониды Шотландии [Williams et al., 2003]. Опубликованы палеогеографические реконструкции этого же региона, основанные на брахиоподах и трилобитах [McKernow, Cocks, 1986]. Надо отметить, что бентосные формы имеют явное преимущество в палеогеографических построениях, так как для них возможна оценка времени существования личиночных планктонных форм, которые могут пересекать открытые бассейны. На этой особенности бентоса рассчитывается расстояния между континентами [Gubanov, 2002; Rozhnov, 2007]. Так, на основании комплекса двустворок предполагается, что расстояние между Лаврентией и Шотландией в позднем ордовике составляло 5500 км [Schmachtenberg, 2011].

Конодонты, как и другие планктонные группы ордовика, по сравнению с бентосными формами очень ограниченно используются для палеогеографических реконструкций [Rasmussen, 1998; Armstrong, Owen, 2002; Zhen, Nicoll, 2009]. Это связано в том числе именно с невозможностью различить океанические и мелководноморские таксоны, тогда как четкое распознавание последних и присутствие их на каких-либо континентах могут говорить о географической близости палеобассейнов.

Охарактеризовать океаническую биохориальную область и соответственно установить таксономический состав пелагических фаун конodont было возможным в результате изучения конодонт из кремнистых отложений Казахстана. Разделение океанической и мелководноморской фаун позволило по-новому взглянуть на биохориальные особенности конодонтов западной части Центрально-Азиатского складчатого пояса.
ОКЕАНИЧЕСКАЯ БИОГЕОГРАФИЧЕСКАЯ ОБЛАСТЬ

Одно из двух высших иерархических подразделений в биогеографическом районировании ордовика, которое было введено работой Ж. Жена и Я. Персиваль [Zhen, Percival, 2003]. Эта область охватывает все глубоководные отложения пелагиальных ордовикских океанов, которые, очевидно, накапливались на значительно большей территории, чем они занимают в настоящее время. Пелагические кремнистые отложения ордовика известны из палеозоида Казахстана, из острроводужных, задуговых и океанических комплексов Южного Урала [Dubinina, Ryazantsev, 2008], зоны Лачлан (Lachlan) Восточной Австралии [Murray, Stewart, 2001; Glen et al., 2004], кадезонид Южной Шотландии [Lamont, Lindstrom, 1957; Armstrong et al., 2001] (рис. 43). Наиболее хорошо представлены и соответственно изучены пелагические отложения нижнего и среднего ордовика, когда кремнистое осадконакопление было наиболее широко распространено.

В палеозоях Казахстана пелагические отложения ордовика представлены биогенными кремнями, яшмами, кремнистыми алевролитами и аргиллитами. Эти породы входят в состав офиолитовых и острроводужных комплексов, а также встречаются в полностью осадочных последовательностях. Источник кремнистого материала преимущественно биогенный — радиолярии, в меньшей степени спикулы губок.

Отложения, в которых наблюдается незначительная примесь терригенного материала, как правило, сильно конденсированы. Так, в бурбайтальной свите Бурнентаукской зоны Юго-Западного Прибалхашья стратиграфический интервал от кембрия до средней части дарривильского яруса (около 25 млн лет) сложен толщей, мощность которой не превышает 80 м. Конденсированные разрезы характерны только для раннего и нижней части среднего ордовика, однако и в этом интервале на территории Казахстана наблюдаются разрезы, где мощность отложений увеличена за счет привноса терригенного материала (например, ушкызыльская свита западного Предчингизья). Более молодые среднеордовикские кремни имеют большую мощность не только за счет разбавления терригенными осадками, но и из-за более активного поступления или осаждения кремнистого материала.

Пелагические радиоляриевые кремни, как правило, сформированы в относительно однородные и продолжительные по возрасту кремнистые и кремнисто-терригенные последовательности, тогда как спикулиты чаще встречаются в отдельных пластах и пачках кремней в карбонатно-терригенных и терригенных толщах. Некоторые кремни в терригенных отложениях имеют диагенетическую природу (кремни найманской свиты Чингизской зоны, тасбулакской свиты Текелийской зоны). Такие толщи могли накапливаться и в относительно мелководных условиях.

В кремнистых и кремнисто-терригенных разрезах Ерментау-Чуилийской зоны карбонатные породы отсутствуют, что говорит об их накоплении ниже уровня карбонатной компенсации. Какие бы не были абсолютные показатели глубин
ордовикского океана, но отсутствие карбонатов свидетельствует о больших глубинах накопления толщи, чем у толщи, содержащих карбонатные породы, поэтому кремнистые разрезы считаются маргинальными в ряду фациального перехода от континента к океану и сопоставляются с кремнисто-терригенными, существенно радиоляриевыми отложениями абиссальных равнин современных океанов.

Вопрос об абсолютных глубинах ордовикского океана не решается однозначно. В современных океанах уровень карбонатной компенсации находится на очень больших глубинах около 4000–4500 м, однако в ордовике он, скорее всего, располагался значительно выше, что связано с большим в это время содержанием углекислоты в атмосфере и воде [Kump et al., 2009]. Бентосная фауна в кремнистых отложениях однообразна и очень немногочисленна, к ней относятся губки, лингулиды и примитивные птеробранхи. В современных океанах эта ассоциация встречается на больших глубинах до 4000 м и является, скорее, показателем определенных условий, чем глубины бассейна. Косвенным признаком относительно небольшой глубины Казахстанского ордовикского океана является редкость одновозрастных с кремнистыми разрезами переходных фаций от океана к мелководным отложениям, в частности фаций континентального склона. Одновозрастные кремнистой бурубайтальной свиты образования в Бурунтауской, Сарытумской и Джалаир-Найманской зонах — это также глубоководная вулканогенно-кремнистая жалгызская свита и относительно мелководные акжальская свита и относительно мелководные отложения абиссальных равнин современных океанов.

Если предположить, что океан был глубоководным, то практически полное отсутствие склоновых фаций, которое наблюдается в настоящее время, возможно только при его ограниченном территориальном развитии в ордовике, а значит при значительном градиенте глубин. Это в свою очередь привело бы к накоплению груботерригенных фаций и разносу тонкотерригенного материала на большие расстояния. В то же время в кремнистых толщах бурубайтальной свиты в пределах нижнего и начале среднего ордовика не наблюдается присвонос терригенного материала, как и толщ, сложенных грубыми склоновыми отложениями. При относительно мелководном океане и накоплении кремнистых отложений на небольших глубинах отсутствие склоновых отложений более логично вписывается в предполагаемый палеогеографический профиль.

Таким образом, по косвенным признакам глубина абиссальной равнины палеобассейна, где шло накопление бурубайтальной свиты, не превышала 1000—1500 м.

Бентосная фауна абиссальных фаций, как уже упоминалось, представлена губками, лингулидами и примитивными птеробранхами, пелагическая фауна — радиоляриями, грантолитами, конодонтами и мелкими членостоногими (род Caryocaris). Кроме того, встречаются разнообразные микрофитофоссии, среди которых наиболее распространены леосферидные формы Tasmanites, а также микрооболочные тела и филаменты. Сходная фаунистическая ассоциация нижнего ордовика (верхней части тренадокского яруса) была описана в Северной Америке в Неваде (Antelope Range, Eureka) в так называемых сланцах Caryocaris, которые, как считается, формировались в самых глубоководных частях бассейна на внешнем шельфе [Ethington, 1981].

В кремнях бурубайтальной и других изученных свит кремнистого состава наиболее часто встречаемой фауной после радиолярий являются конодонты. Они распределены в осадках неравномерно. Некоторые отдельные пластины или поверхности напластования содержат сотни элементов, тогда как в соседних пластинах конодонты могут быть редки или даже отсутствовать. Количество конодонтов, если не рассматривать вторичное изменение породы и растворение фосфатного материала, зависит от скорости осадконакопления: чем медленнее скорость формирования отложений, тем больше конодонтов успевает накапливаться за рассматриваемый промежуток времени. Скорость осадконакопления нижней части бурубайтальной свиты не превышает 0,3 мм за 100 лет, тогда как верхняя дапинско-дарривильская часть накапливалась быстрее — до 1–2 мм за 100 лет.

Присутствие продолжительных по времени накопления кремнистых толщ ордовика — это специфичная и неотъемлемая черта Ерментау-Бурунтауской зоны Казахстана, которая протянулась на более чем 2000 км при современной ширине 100–200 км. Безусловно, линейная структура этой складчатой зоны является во многом результатом направленных тектонических движений, либо при формировании осадочных образований либо в приэкваториальной зоне дивергенции, либо при отсутствии активной термогалинской циркуляции в приэкваториальной зоне, где исчезала плотная нестабильная вулканическая зона. В любом из этих случаев Ерментав-Бурунтауская зона в ордовикское время должна была быть развернута
на 90° против часовой стрелки в широтном направлении, что и подтверждается на основании палеомагнитных данных [Bazhenov et al., 2012].

Палеомагнитные данные показывают расположение Казахстана 8–10° южнее экватора на протяжении всего ордовикского периода [Bazhenov et al., 2012]. Скорее всего, кремненакопление объясняется повышенной продуктивностью биоты в припоперечных слоях призыватыральных-толщих зон в целом олиготрофного океана [Martin, 1996] в результате смешения нижних и верхних слоев воды при прогреве и исчезновении термоклина и дополнительном притоке питательных веществ. Этот механизм объясняет и более широкое распространение кремней в нижнем, чем в среднем и верхнем ордовике. Установлено циркуляции океана к среднему ордовику, возможно, и смену механизма увеличения продуктивности в призыватыральной полосе на апвеллинг в результате возникшей дивергенции, но одновременно и привело к уменьшению кислотности океанов и снижению уровня карбонатной компенсации, то есть привело к возможности образования карбонатов на больших глубинах и значит к ограничению территорий накопления кремней [Walker et al., 2002].

Формирование кремнистых толщ только в призыватыральной зоне повышенной продуктивности объясняет в целом неширотное распределение мощных кремнистых осадков в относительно низких широтах. В более высоких широтах на север и на юг в океанах, вероятно, накапливались только маломощные терригенные толщи, аналогичные современным глубоководным илам, которые не фиксируются в геологической летописи.

В других регионах, где известны кремнистые толщи ордовикского возраста, отмечается значительно меньший масштаб кремнеобразования, что может объясняться или близостью источника сноса терригенно-карбонатного материала с сильным «разбавлением» кремнистого осадка (на Урале), или уходом палеобассейна из темноводных широт (в Шотландии).

Таким образом, конодонтовые комплексы из кремнистых толщ Казахстана характеризуют тепловодную часть океанической биогеографической области.

Наиболее полно охарактеризован конодонтами только нижний ордовик, так как из кремней этого возраста удалось выделить конодонтов растворением. Без извлечения конодонтов из породы получить разнообразный уверенно идентифицированный комплекс практически невозможно. Комплекс верхней части среднего, а тем более верхнего ордовика, где насчитывается 6–7 океанических видов, скорее всего, не полон, но в целом даже имеющиеся данные указывают как более низкое разнообразие конодонтов в океанах второй половины ордовика.

В целом в кремнистых отложениях было обнаружено 53 вида конодонтов, включая те формы, которые представлены только единичными элементами и могут быть уверенно идентифицированы только в открытой номенклатуре. Для таких видов (рис. 44) указано распространение рода. Подавляющее большинство видов является конодонтоами, их находки известны из карбонатных относительно глубоководных отложений на практически всех палеоконтинентах. Практически все эти виды встречены на о. Ньюфаундленд и островах полярной части Канады, расположенных в другой части земного шара [Stouge, 1984; Pyle, Barnes, 2002; и др.]. Распространение всех видов не ограничено Австралио-Азиатской провинцией, к которой относится относительно мелководные фауны Казахстана.

Отсутствие какого-либо вида, например Paroiostodus horridus в Северном Китае, может означать, что в регионах отсутствуют данные по относительно глубоководным комплектам соответственно возраста. Так, на Сибирской платформе, где мало открытых морей конодонтов, отсутствуют глубоководные фауны, а в регионах, окаймляющих платформу (п–ов Таймыр), они не изучены. В то же время на о. Беннета (Новосибирские острова), который в ордовике, возможно, относился к Сибирскому бассейну, комплекс конодонтов нижнего и среднего ордовика содержит значительное количество океанических таксонов.

Из 53 океанических видов только три, возможно, являются эндемичными для Казахстана, при этом два представлены новых родов Chigonodus parulis и Gen. sp. indet. 1 были встречены только в кремнях и, скорее всего, являются океаническими эндемиками. Наличие эндемизма на уровне высших таксонов — характерный признак биогеографических подразделений высших порядков в современных океанах, что подтверждает корректность выделения океанической биогеографической области для акваторий ордовикского времени.

Восемь таксонов раннего ордовика, четыре из которых имеют родовой уровень, не встречаются в Балтоскандинии и Западной Европе, хотя эти регионы изучены достаточно полно. Среди них K. serratus, T. sweeti, P. gradatus, K. corbatoi, B. extenus, P. honghuayuanensis, O. intermedium, A. longibasis и элементы рода Hirsutodontus. Наиболее вероятно, что распространение данных видов было ограничено только тепловодной зоной.
Виды конодонтов из кремнистых отложений Казахстана

<table>
<thead>
<tr>
<th>Виды конодонтов</th>
<th>Тяпк</th>
<th>Тандан</th>
<th>Северный</th>
<th>Южный</th>
<th>Австралия, Новая Зеландия</th>
<th>Ньюфаундленд, Арктическая Канада</th>
<th>Центральная Америка</th>
<th>Аргентина</th>
<th>Балтия</th>
<th>Северо-Восточная Сибирь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Верхний ордовик</td>
<td></td>
</tr>
<tr>
<td>H. europeaus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. altipes</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. grandis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. anserinus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Средний ордовик</td>
<td></td>
</tr>
<tr>
<td>P. serra</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. kristinae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. sinuosa</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. holodentata</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. longiscapica</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. horridus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. spinatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. macrodentatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aculeatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. cf. E. hexianensis</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. marathonensis</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dzikodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нижний ордовик</td>
<td></td>
</tr>
<tr>
<td>P. gracilis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. elegans</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. flabellum</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. primus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. evae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. intermedius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. cf. O. pincallyensis</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. elongatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. papillosus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. gladiatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. proteus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. reclinatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. arcuatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. cf. simplicissimus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. peselephantis s.l.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. serratus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. corbatoi</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. extensus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. longibasis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. sweeti</td>
<td>x?</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. longibasis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gradatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. australis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scylodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. costatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordylodus spp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oistodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. notchpeakensis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirsutodontus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. honghuayuanensis</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td>x?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. partilis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acodus sp. A</td>
<td></td>
</tr>
<tr>
<td>Gen. indet. sp.1</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 44. Виды конодонтов, характерные для кремнистых отложений ордовика Казахстана, и их распространение на других континентах (x — присутствие вида, x? — вероятное присутствие, жирным выделены вероятные виды-эндемики). Данные по распространению фауны приведены из опубликованных работ по регионам.
океана, а Балтоскандийский палеобассейн и расположенные южнее террейны относились к другой температурной зоне. Связь существования этих видов с температурным фактором подтверждается находками по крайней мере одного из указанных видов — A. longibasis в раннем ордовике на северной, более тепловодной окраине Восточно-Европейской платформы (данные автора). В кремнистых породах Южного Урала встречается (в списках без изображения) B. extensus, что может быть свидетельством относительно большей тепловодности восточной окраины платформы.

Таким образом, подтверждается предсказанное Ж. Женом и Яном Персивалем [Zhen, Percival, 2003] подразделение океанической биогеографической области на климатические пояса. На данном уровне изученности конодонтов для раннего ордовика можно выделить две широтные зоны — тепловодную, захватывающую все палеоконтиненты, расположенные в приэкваториальной зоне (Сибирь, Лаврентия и близко к ней расположенные континентальные блоки), и умеренно тепловодную или холодноводную, к которой относятся южная сторона Балтики, Авалония и террейны Западной Гондваны (рис. 45).

В среднем ордовике какие-либо различия в комплексах океанических конодонтов, встречающихся на разных континентах, не отмечаются. При этом необходимо учитывать, что карбонаты в низах среднего ордовика в палеобассейнах, расположенных южнее Балтоскандинии, встречаются редко, а поэтому в целом относительно высокоширотные бассейны слабо охарактеризованы конодонтами. В то же время Балтоскандия к концу среднего ордовика значительно продвинулась к экватору и, возможно, оказалась в пределах одной биогеографической зоны с остальными палеоконтinentами.

Карбонатные мощные толщи в холодноводных бассейнах Авалонии и Перуники появляются с позднего ордовика, что позволяет охарактеризовать конодонтовую фауну, населяющую самые южные палеобассейны. Известно не так много океанических видов верхнего ордовика, тем не менее состав фаун этого времени, вероятно, связан с существующей климатической зональностью. Вид Periodon grandis, широко распространенный в глубоководных и мелководных отложениях тепловодных морей [Мельников, 1999; Dubinina, Ryasantsev, 2008; и др.], и редко, но встречающийся в Балтоскандинии [Bergström et al., 2011] в хорошо изученных разрезах Германии, Шотландии и Италии, не обнаружен. Возможно, распространение этого вида ограничено климатической и циркуляционной зональностью в позднем ордовике.

Конодонтовые комплексы из кремнистых отложений Южного Урала [Dubinina, Ryazantsev, 2008] содержат типичный для этой фаши набор океанических видов, известный из Казахстана и Шотландии. Все виды, которые выбираются из этого стандартного списка, например, виды родов Belodina и Plectodina, характерные для мелководно-норморских фаший, упомянуты только в списках, а их изображения в публикациях отсутствуют. Такие формы, чье присутствие в кремнях не доказано, не могут использоваться для биогеографических построений.

Океанические виды на всех палеоконтinentах встречаются в широком спектре обстановок от глубоководных осадков континентального склона до умеренных глубин неритовой области. Чем
мелководнее отложения, тем реже там обнаруживаются океанические виды, за исключением, как было указано ранее, холодноводных отложений Балтики. Распространение океанических видов в карбонатных разрезах Восточно-Европейской платформы, Урала, Казахстана, Киргизии и Алтая показано на рис. 46. В карбонатах палеозоя Казахстана и Северной Киргизии отмечается наибольшее количество океанических видов. В целом из 53 океанических видов в карбонатах не были найдены только пять — *C. parilis, Acodus cf. A. emanuelensis, P. honghuayuanensis, F. maratonensis и H. europaeus*. Отсутствие последнего вида в мелководных фа- циях, скорее всего, связано с недостаточной изученностью на конодонты в Казахстане карбонатных разрезов раннего и верхнего ордовика. Если рассматривать все местонахождения отдельно, то доля океанических форм в Казахстане колеблется от 70–80% (аккайская свита Чу-Илийских гор) до 10% (вулканогенная толща Урумбайского района). Надо отметить, что в других регионах количество океанических видов в местонахождениях также меняется с глубиной бассейна. В ордовике Швеции и Норвегии (Западная Балтоскандия) океанических видов больше, чем восточнее, в разрезах Эстонии и Ленинградской области. Кроме того, для Восточной Балтоскандии характерно уменьшение доли океанических видов в течение

<table>
<thead>
<tr>
<th>Виды</th>
<th>Казахстан</th>
<th>Алтай</th>
<th>Западная Балтоскандия</th>
<th>Восточная Балтоскандия</th>
<th>Московский палеобассейн</th>
<th>Север ВЕП</th>
<th>Южный Урал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Верхний ордовик</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. europaeus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>S. altipes</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. grandis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. anserinus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. serra</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>H. kristinae</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>H. holodentata</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>A. longicuspica</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. horridus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>S. spini</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. macrodentatus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. aculeatus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. flabellum</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>E. cf. E. hexianensis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Dzikodus sp.</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>F. marathonensis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Средний ордовик</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. intermedius</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>O. elongatus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. iaiiliosus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>L. gladiatus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Oistodus sp.</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. iroteus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>D. arcuatus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>D. peselephantis s.l.</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>C. longibasis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Cordylodus spp.</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Costiconus spp.</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>E. notchpeakensis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Hirsutodontus sp.</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>A. longibasis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>B. extensus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>K. serratus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>K. corbatoi</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>T. australis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>T. sweeti</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Acodus sp. A</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>A. cf. A. emanuelensis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>C. parilis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Histiodella sp.1</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>O. cf. O. pincallyensis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. honghuayuanensis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Gen. indet. sp.1</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>Нижний ордовик</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gracilis</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. elegans</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. flabellum</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>P. ? P. primus</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
<tr>
<td>O. evae</td>
<td>х</td>
<td>х</td>
<td>(х)</td>
<td>х</td>
<td>х</td>
<td>х</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 46. Распространение открытоморских видов в карбонатных отложениях Восточно-Европейской платформы, Урала, Казахстана, Киргизии и Алтая

«х» — присутствие вида, «—» — отсутствие вида, «х?» — спорное присутствие вида, (х) — присутствие вида в пределах региона, по материалам автора и опубликованным данным (Западная Балтоскандия [Rasmussen, 2001], Восточная Балтоскандия [Mannik, Viira, 2012], северная часть Восточно-Европейской платформы [Melnikov, 1999])
Т. Ю. Толмачева

ордовика. Если в раннем ордовике Ленинградской области в пределах зон *Paroistodus proteus* и *Prioniodus elegans* океанические конодонты составляют до 50% всего комплекса, то в интервале зоны *Oepikodus evae* их количество сокращается до 30%, а в более молодых отложениях – до 10% (рис. 47).

МЕЛКОВОДНАЯ (НЕРИТОВАЯ) БИОГЕОГРАФИЧЕСКАЯ ОБЛАСТЬ

Мелководная область – это второе высшее подразделение в биогеографическом районировании ордовика по конодонтам [Zhen, Percival, 2003]. Охватывает все неритовые (с глубинами условно < 200 м) мелководные отложения шельфов и эпиконтинентальных бассейнов. Ордовик является уникальным временем в истории Земли из-за исключительно широкого распространения отложений тропических карбонатных шельфов. Особенно ярко это проявлено в низах ордовика, к среднему и верхнему ордовику при общем расширении распространения шельфов постепенно увеличивается доля терригенных шельфовых отложений [Walker et al., 2002].

Мелководные конодонтовые комплексы помимо общих океанических форм содержат разнообразные неритовые таксоны, которые и определяют специфику палеобассейна. Практически для каждого из палеоконтинентов выделяются провинции [Zhen, Percival, 2003], что подтверждает высокий уровень разобщенности палеоконтинентов в ордовикское время. Для мелководной области выделяются три климатические широтные зоны: холодноводная, умеренно тепловодная и тропическая.

К холодноводной зоне в раннем ордовике Ж. Жен и Ян Персиваль отнесли только Балто-Скандинавскую провинцию, к умеренно тепловой — Южно-Китайскую и Аргентинскую провинции, к тропической — Лаврентийскую, Австралийскую и Северо-Китайскую (рис. 48).

В эту классификацию, предложенную для раннего ордовика, вошли только палеобассейны, и лишь в пределах Лаврентийской провинции Балто-Скандинавской области (область низов, глубина < 200 м) таксономическое разнообразие и численность значительно снижаются (рис. 48).

<table>
<thead>
<tr>
<th>Палеобассейны</th>
<th>Количество океанических видов в регионе</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мелководноморская область (Казахстан, Алтай)</td>
<td>31</td>
</tr>
<tr>
<td>Западная Балтоскандия (Западная Швеция, Норвегия)</td>
<td>22</td>
</tr>
<tr>
<td>Восточная Балтоскандия (Эстония, Ленинградская область)</td>
<td>19</td>
</tr>
<tr>
<td>Московский палеобассейн</td>
<td>1</td>
</tr>
<tr>
<td>Север ВЕП (Тимано-Печорский регион, Приполярный и Полярный Урал)</td>
<td>15</td>
</tr>
<tr>
<td>Южный Урал</td>
<td>17</td>
</tr>
<tr>
<td>Ньюфаундленд</td>
<td>28</td>
</tr>
<tr>
<td>Аргентина</td>
<td>17</td>
</tr>
</tbody>
</table>

Рис. 47. Количество океанических видов, известных в отложениях перечисленных регионов. Данные по Ньюфаундленду [Johnston, Barnes, 1999; Stouge, 1984], Аргентине [Albanesi, 1998; Lehnert et al., 1998]

Рис. 48. Биохимическое районирование мелководной области раннего ордовика, по [Zhen, Percival, 2003]
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

ны с преимущественно карбонатным осадконакоплением, где конодонты изучены наиболее хорошо. Авторы не пытались проанализировать опубликованные данные по Тимано-Печорскому региону [Мельников, 1999], Уралу [Наседкина, 1975 и др.], Казахстану [Дубинина, 2000]. В этой классификации отсутствует и Сибирская платформа, которая не отнесена ни к Лаврентийской, ни к отдельной Сибирской провинции. В рамках новой иерархии биогеографических построений не было предложено районирования для среднего и позднего ордовика. В связи с этим одной из задач данного исследования были классификация не включенных в существующие схемы районирования конодонтовых фаун западной части Центрально-Азиатского пояса и выявление их биогеографических особенностей.

БИОГЕОГРАФИЧЕСКОЕ РАЙОНИРОВАНИЕ ЗАПАДНОЙ ЧАСТИ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА

Казахстан является одним из регионов, где достаточно хорошо изучены многие фаunistические группы, главным образом трилобиты, брахиоподы, граптолиты и кораллы. Уже по первым данным о фауне этого региона складывались представления о ее биогеографических особенностях. Практически все исследователи-палеонтологи высказывали свое мнение о биогеографической характеристике изученных ими комплексов.

Несмотря на разногласия в биогеографическом районировании по разным группам фауны, все авторы единодушно считали, что фауна Казахстана была тепловодной. Кроме того, отмечалось, что с экваториальными фаунами Сибири, Северного Урала и Арктических островов у фауны Казахстана достаточно мало общих компонентов. Для разных групп фауны отмечалось, что фаунистические сообщества Севера и Северо-Востока Казахстана, вероятно, были более теплолюбивыми, чем фауны юга и юго-запада [Никитин, 1972].

Современный этап в изучении фауны Казахстана начался в XXI в., когда после длительного спада научной активности 90-х годов стали появляться новые палеонтологические работы. Было установлено, что ордовикские трилобиты Малого и Большого Каратау сходны с трилобитами юго-западной части Южного Китая [Fortey, Cocks, 2003]. Л. Холмер и Л. Попов отмечали сходство беззамковых брахиопод Северного Тянь-Шаня и Балтоскандинавии, но объяснили это широким географическим распространением таксонов [Holmer et al., 2001; Popov et al., 2000]. Подчеркивалось сходство трилобитов гор Хенджск [Лисогор, 1961] с фауной Северного Тянь-Шаня, а трилобитов из среднего ордовика Северного Казахстана (андриушинская свита, разрез Куприянова) с южно-китайской фауной [Fortey, Cocks, 2003]. Интересно, что последние авторы считали ассоциации трилобитов из среднекембрийского караканского известняка (Бетпак-Дала) более близкими к лаврентийским, чем к китайским. Трилобиты и брахиопод Чу-Илийских гор они сопоставляли с мелководными комплексами Восточной Гондваны, т. е. с Северным Китаем, Тиби том и Юго-Восточной Австралией [Fortey, Cocks,
Заключение О. П. Ковалевского о том, что фауна Чингиз-Тарбагатайских гор, по крайней мере начиная с позднего ордовика, не отличается существенно от восточногондванской, было подтверждено трилобитами [Fortey, Cocks, 2003].

В настоящее время большинство исследователей считают, что бентосные фауны Казахстана в целом достаточно единообразны в биогеографическом отношении и близки к фаунам, насе-ляющим террейны приэкваториальной восточной окраины палеоконтинента Гондвана, т. е. в основном к Северному, Южному Китаю и Тариму и в значительно меньшей степени к Австралии [Nikitin et al., 2003; Nikitina et al., 2006; Fortey, Cocks, 2003; Popov et al., 2002, 2007, 2009]. Это возможно только в случае относительно компактного расположения блоков, слагающих палеозоиды Казахстана, в непосредственной близости к Гондване. Никакие «растянутые» модели расположения террейнов Казахстана, например [Sengor, Natalin, 1996; Wilhem et al., 2012], фауны не подтверждаются. Только для Алтае-Саянской террейнов предполагается, что в начале ордовика они относительно ближе располагались к Сибирской платформе, но к позднему ордовику сместились к Гондванской окраине [Fortey, Cocks, 2003] (рис. 49).

Одним из важных продолжений этой работы должно быть согласование предложенного биогеографического районирования с современными геодинамическими реконструкциями, согласно которым, а также палеомагнитным данным, основная часть палеозоид Казахстана представляла собой единий микроконтинент с сиалическим фундаментом и платформенным докембрийским чехлом (рис. 51) [Bazhenov et al., 2012].

Расстояние между сиалическим массивом и Чингизской, Байдуалет-Акбастауской остро-водужными системами, а также меньшим Актау-Моинтинским массивом по геологическим данным оценивается достаточно условно. Очевидно, что комплексный подход к палеогеографии палеозоид Казахстана может дать хороший результат, но пока такие работы только ожидают.

В настоящее время для детальной палеогеографии не хватает фактических данных по рас пространению фауны, в том числе и по распро-

Рис. 49. Палеогеографическая реконструкция окраины Восточной Гондваны для сандбийского века с расположением террейнов Казахстана [Cocks, Fortey, 2003]
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

странению конодонтов. В частности, отсутствуют или не переизучены коллекции брахиопод и триLOBитов из Байдулет-Акбастауской и Актау-Моинтинской зон.

Бентосные группы фауны, безусловно, имеют больший приоритет в детальных палеогеографических реконструкциях, касающихся определения расстояния между палеобассейнами, за счет их меньшей способности пересекать глубоководные открытые бассейны. Однако пелагические группы фауны также начинают привлекаться для палеогеографических построений [Armstrong, Owen, 2002; Servais et al., 2005].

Представления о биогеографии ордовикских конодонтов Казахстана вплоть до настоящего времени были ограничены анализом океанических конодонтов из кремнистых отложений и единственным хорошо изученным разрезом Батырбай в горах Малого Каратау. Для океанических конодонтов отмечалось сходство с фауной нижнего ордовика Балтоскандии, т. е. единство с Северо-Атлантической относительно холодноводной провинцией [Dubinina, 1998]. Более мелководные конодонты из Малого Каратау были признаны схожими с конодонтами континентального склона Северной Америки [Дубинина, 2000]. Это был совершенно правильный и корректный вывод, который в настоящее время подтверждается во всех изученных разрезах Казахстана. Этот факт, который легко объясняется хорошей изученностью глубоководных отложений Ньюфаундленда и космополитизмом океанических фаун, привел к сложным биогеографическим и биофациальным построениям с выделением переходной климатической зоны и выводам о существовании конодонтов в широком вертикальном диапазоне водных масс ниже зоны постоянного термоклина [Дубинина, 2000].

Надо отметить, что предположения о биогеографической приуроченности конодонтов двигались и для фауны позднего кембрия. Конодонты верхнего кембрия разреза на р. Селеты сопоставлялись с фауной Северного и Северо-Восточного Китая [Гридина, 1991].

Список видов, обнаруженных в изученных карбонатных отложениях Казахстана, Северной Киргизии и Горного Алтая, показан на рис. 52. Отмечено их распространение в других регионах. Надо учитывать, что отсутствие какого-либо вида на других палеоконтинентах может определяться не только биогеографическими причинами, но и слабой изученностью этого стратиграфического интервала, либо проблемами с идентификацией форм. В связи с этим выделение таксонов, маркирующих провинции, и обоснование самих провинций требуют очень осторожного подхода и уверенности в хорошей изученности сопоставляемых фаун.

В мелководных (=карбонатных) отложениях Казахстана, Алтая и Северной Киргизии океанические виды-космополиты составляют значительную долю сообществ (рис. 52). При этом в раннем ордовике их доля больше, а в позднем она значительно сокращается за счет меньшей изученности конодонтов. В нижнем ордовике количество изученных местонахождений конодонтов в карбонатных породах меньше, чем в среднем, а конодонты из кремней верхнего ордовика известны только из единичных обнаружений. Несмотря на это, в интервале от раннего к среднему ордовику отмечается общее увеличение разнообразия неритовых, относительно мелководноморских видов. Это наблюдается как в Казахстане, так и в других регионах, например в Балтоскандии.

Мелководные комплексы нижнего ордовика, помимо океанических видов (отмеченных серым цветом), включают таксоны, характерные для шельфовых областей Северной Америки. Причем, что какие-либо неритовые таксоны, даже на родовом уровне, которые были бы характерны для Балтоскандийского бассейна или Урала, в Казахстане и Северной Киргизии не обнаружены. Практически все конические формы представлены небольшим количеством экземпляров и достаточно сложны для определения из-за простой морфологии и большой изменчивости. Они определяются в большинстве случаев только условно, как иногда условно устанавливается и их присутствие в Аргентине, Китае и Австралии.
<table>
<thead>
<tr>
<th>Виды</th>
<th>Прим</th>
<th>Таиланд</th>
<th>Северный Китай</th>
<th>Южный Китай</th>
<th>Австралия, Новая Зеландия</th>
<th>Ньюфаундленд, Арктическая Канада</th>
<th>Центральная Америка</th>
<th>Аргентина</th>
<th>Восточно-Европейская платформа</th>
<th>Сибирь, Северо-Восток РФ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Верхний ордовик</td>
<td></td>
</tr>
<tr>
<td>S. altipes</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. grandis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. trigonius</td>
<td></td>
</tr>
<tr>
<td>Y.? tunguskaensis</td>
<td></td>
</tr>
<tr>
<td>P. undatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.? nowlani</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. parvis</td>
<td></td>
</tr>
<tr>
<td>P. liripus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Besselodus sp.</td>
<td></td>
</tr>
<tr>
<td>Panderodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chirognathus sp.</td>
<td></td>
</tr>
<tr>
<td>Belodina sp.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Средний ордовик</td>
<td></td>
</tr>
<tr>
<td>P. anserinus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. serra</td>
<td></td>
</tr>
<tr>
<td>H. kristinae</td>
<td></td>
</tr>
<tr>
<td>H. holodentata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. jemtlanica</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>P. horridus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. spinatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. macrodentatus</td>
<td></td>
</tr>
<tr>
<td>P. aculeatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinodurus sp.1</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>Dzikodus sp.</td>
<td></td>
</tr>
<tr>
<td>A. robusta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>P. cooperi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. aff. basiovalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>P. calceatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. striatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>C. ethingtoni</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. cf. balticus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>Paroistodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yangzeplacognathus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eoplocladognathus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabahognathus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>J. variabilis</td>
<td></td>
</tr>
<tr>
<td>J. jaanussoni</td>
<td></td>
</tr>
<tr>
<td>A. leptosomatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.? mufushanensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>D. latus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>A. cf. A. longus</td>
<td></td>
</tr>
<tr>
<td>S.? assymmetricus</td>
<td></td>
</tr>
<tr>
<td>? Planusodus sp.</td>
<td></td>
</tr>
<tr>
<td>Appalachianognathus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loxodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x?</td>
</tr>
<tr>
<td>P. nogami</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drepanoistodus sp. 1</td>
<td></td>
</tr>
<tr>
<td>Parapanderodus sp.1</td>
<td></td>
</tr>
<tr>
<td>Juanognathus sp. 1</td>
<td></td>
</tr>
<tr>
<td>N. degtiarevi</td>
<td></td>
</tr>
<tr>
<td>Protopanderodus sp.1</td>
<td></td>
</tr>
<tr>
<td>H. levis</td>
<td></td>
</tr>
</tbody>
</table>
Нижний ордовик

<table>
<thead>
<tr>
<th>Виды</th>
<th>Тарим</th>
<th>Тибет</th>
<th>Северный Китай</th>
<th>Южный Китай</th>
<th>Австралия, Новая Зеландия</th>
<th>Ньюфаундленд, Арктическая Канада</th>
<th>Центральная Америка</th>
<th>Аргентина</th>
<th>Восточно-Европейская платформа</th>
<th>Сибирь, Северо-Восток РФ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. honghuayuanensis</td>
<td></td>
</tr>
<tr>
<td>P. elegans</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. flabellum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gracilis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. cf. P. primus</td>
<td></td>
</tr>
<tr>
<td>O. evae</td>
<td></td>
</tr>
<tr>
<td>O. cf. O. pincallyensis</td>
<td></td>
</tr>
<tr>
<td>P. papillosus</td>
<td></td>
</tr>
<tr>
<td>L. gladiatus</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. elongatus</td>
<td></td>
</tr>
<tr>
<td>D. reclinatus</td>
<td></td>
</tr>
<tr>
<td>P. proteus</td>
<td></td>
</tr>
<tr>
<td>D. arcuatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. peselephantis s.l.</td>
<td></td>
</tr>
<tr>
<td>C. longibasis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. australis</td>
<td></td>
</tr>
<tr>
<td>Cordylodus spp.</td>
<td></td>
</tr>
<tr>
<td>Costiconus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. serratus</td>
<td></td>
</tr>
<tr>
<td>K. corbatoi</td>
<td></td>
</tr>
<tr>
<td>B. extensus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. simplicissimus</td>
<td></td>
</tr>
<tr>
<td>T. sweeti</td>
<td></td>
</tr>
<tr>
<td>P. gradatus</td>
<td></td>
</tr>
<tr>
<td>Sclopodus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirsutodontus sp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oistodus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Loxodus sp.</td>
<td></td>
</tr>
<tr>
<td>G. bolites</td>
<td></td>
</tr>
<tr>
<td>V. bassleri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Rossodus sp.</td>
<td></td>
</tr>
<tr>
<td>Colaptoconus sp.</td>
<td></td>
</tr>
<tr>
<td>L. cf. bifida</td>
<td></td>
</tr>
<tr>
<td>P. cooperi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. longibasis</td>
<td></td>
</tr>
<tr>
<td>P. cf. pristinus</td>
<td></td>
</tr>
<tr>
<td>S.? oistodiformis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S. bilobatus)</td>
<td></td>
</tr>
<tr>
<td>Acodus sp. A</td>
<td></td>
</tr>
<tr>
<td>A.? chingizicus</td>
<td></td>
</tr>
<tr>
<td>Gen. indet. sp. 1</td>
<td></td>
</tr>
<tr>
<td>Cruxodus tretiakovi</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 52. Список видов из карбонатных отложений Казахстана и Северной Киргизии и их распространение в других регионах. Жирным шрифтом отмечены виды, эндемичные для Казахстана; светло-серая заливка — океанические виды, которые встречаются в мелководных отложениях; светло-серая заливка столбцов — виды тропической и умеренно тепловодной климатических зон; темно-серая заливка — виды Австрало-Азиатской провинции. (S. bilobatus) — единственный таксон, не встреченный в изученных коллекциях, был найден С. В. Дубининой в разрезе Батырбай гор Малого Карату [Дубинина, 2000].

В среднем ордовике, как упоминалось выше, доля океанических видов значительно ниже, чем в нижнем. Кроме того, в отличие от нижнего ордовика в комплекс входит неритовые таксоны (частично родового уровня) широкого географического распространения, известные почти на всех континентах, кроме Сибирской платформы. Достаточно большое количество неритовых видов ограничено распространением в тепловодной области и не встречается в Балтоскандии и Аргентине, но были обнаружены в центральных и окраинных частях Северной Америки. Возможно, что один вид встречается только в Восточной Гондване и пять видов являются эндемиками для Казахстана и Северной Киргизии.

Конодонты верхнего ордовика Казахстана изучены недостаточно, но даже и на этом уровне изученности очевидно, что неритовые фауны региона в это время отличались таксономическим разнообразием. Среди обнаруженных видов нет региональных эндемиков; все виды отличаются широким географическим распространением.

На основании региональных эндемиков Prioniodus honghuayuanensis и Serratognathus, характерных только для палеобассейнов Восточной Гондваны конодонтовые фауны нижнего и среднего ордовика Казахстана, Северной Киргизии и Гонского Алтая относятся к Австрало-Азиатской биогеографической провинции.

Таким образом, выделенная на основании географической близости палеобассейнов Австрало-Азиатская провинция включает в себя две климатические зоны — тепловодную и умеренно-тепловодную. В современной системе биогеографического районирования Австрало-Азиатская провинция не выделяется, так как климатические пояса имеют более высокий ранг, чем провинции [Zhen, Percival, 2003].

Кроме того, Австрало-Азиатская провинция — единственный пример провинции, сохраняющей особенности (общие эндемичные таксоны) входящих в нее палеобассейнов, несмотря на выраженную климатическую зональность. Она может рассматриваться как единица другого ранга — Австрало-Азиатская надпровинция. Распознавание биогеографических подразделений внутри этой провинции опирается на эндемичные таксоны — отдельные палеобассейны, такие как Северный и Южный Китай, Центральная и Восточная Австралия, Тарим, Корея, Танланда, характеризующиеся своим набором или соотношениями таксонов широкого распространения, определяемыми, в том числе, фацами.

Из всего количества эндемиков Австрало-Азиатской надпровинции в Казахстане и Северной
Киргизии встречается только их небольшая часть. Это виды *S. bilobatus* и *Drepanoistodus cf. D. costatus*, характерные для всех палеобассейнов Восточной Гондваны. Присутствие региональных эндемиков экваториальной части Восточной Гондваны, также как и возможное отсутствие неритовых таксонов Балтоскандии и Южного Китая (среднеордовикские *Semiacontiodus*, *Baltoniodus* и др.), говорит о положении Казахстана, Северной Киргизии и Алтая в климатической зоне, близкой к экватору, что подтверждается также и палеомагнитными данными [Bazhenov et al., 2012].

Хотя для изученной части Центрально-Азиатского пояса характерны эндемичные таксоны Австрало-Азиатской провинции, в нижнем и среднем ордовике отмечаются виды, которые характерны только для Казахстана, Киргизии и Алтая. Один из наиболее широко распространенных эндемиков *Naimanodus degtiarevi* встречен во всех трех регионах — в Казахстане, Киргизии и Алтая.

<table>
<thead>
<tr>
<th>Виды</th>
<th>Кенташская толща</th>
<th>Узунбулакская свита</th>
<th>Караканская свита</th>
<th>Найданская свита</th>
<th>Вулканогенная толща</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. robusta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. cooperi</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. aff. basiovalis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. calceatus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. striatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C. ethingtoni</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. cf. E. hexianensis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroistodus sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yangtzeplacognathus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eoplacognathus sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabahognathus sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?Dzikodus sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. jaanussoni</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. leptosomatus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ? mufushanensis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Виды</th>
<th>Кенташская толща</th>
<th>Узунбулакская свита</th>
<th>Караканская свита</th>
<th>Найданская свита</th>
<th>Вулканогенная толща</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. latus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cf. A. longus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>S. ? assymetricus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>? Planusodus sp.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Appalachegnathus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Loxodus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Spinodus sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>P. nogami</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>D. cf. D. costatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Paranderodus? sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Juanognathus sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>N. degtiarevi</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>? Anodontus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>H. levis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Рис. 53. Палеогеографическая карта для позднего ордовика с предполагаемыми течениями, по [Agenatsu et al., 2007]

1 — теплое течение; 2 — холодное течение; 3 — тепловодная и холодноводная климатические зоны

Рис. 54. Распространение неритовых конодонтов нижнего дарривилия в местонахождениях изученной части Центрально-Азиатского складчатого пояса
Киргизии и на Алтае. Вид *Cruxodus tretiakovi* обнаружен только в Киргизии, остальные таксоны (*Histiodella levis* и др.) только в Казахстане. На основании эндемиков родового уровня (Казахстан и Северная Киргизия) в рамках классификации Ж. Жена и Ян Персиваля [Zhen, Percival, 2003] эти таксоны могут рассматриваться как Западно-Азиатская провинция.

Предложить обоснованное районирование Западно-Азиатской провинции по конодонтам нижнего ордовика сложно из-за недостаточного количества фактических данных. Так, фауна Северной Киргизии в нижнем ордовике отличается от местонахождений более южных, чем в Северном Казахстане. Конодонтовый комплекс узунбулакской свиты отличается от местонахождений более молодых отложений южных по региону, – это нижняя часть дарривильского яруса (рис. 54).

В кенташской свите Киргизского хребта полный набор видов не выявлен, однако возможно предполагать наследование биогеографической специфики района, наблюдаемой в нижнем ордовике в более молодых отложениях. Конодонтовый комплекс узунбулакской свиты отличается от местонахождений более южных резко континентальной спецификой района, наблюдаемой в нижнем ордовике в более молодых отложениях. Конодонтовый комплекс узунбулакской свиты отличается от местонахождений более южных по региону, – это нижняя часть дарривильского яруса (рис. 54).

В кенташской свите Киргизского хребта полный набор видов не выявлен, однако возможно предполагать наследование биогеографической специфики района, наблюдаемой в нижнем ордовике в более молодых отложениях. Конодонтовый комплекс узунбулакской свиты отличается от местонахождений более южных резко континентальной спецификой района, наблюдаемой в нижнем ордовике в более молодых отложениях. Конодонтовый комплекс узунбулакской свиты отличается от местонахождений более южных по региону, – это нижняя часть дарривильского яруса (рис. 54).

Histiodella levis и Triangulodus sp. и может рассматриваться как отдельный биогеографический район. Однако здесь отличие может определяться скорее фациями и разным объемом коллекции, чем биогеографией. Таким образом, в отдельный биогеографический район Западно-Азиатской провинции выделяются Чу-Илийские горы и Северная Киргизия. Также, возможно, дальнейшее изучение конодонтов покажет биогеографическую обособленность Северного Казахстана.

ПАЛЕОГЕОГРАФИЯ ПАЛЕОЗОИД КАЗАХСТАНА

Как уже упоминалось ранее, таксономический состав мелководных конодонтов изученной территории принципиально отличается от одно-возрастных мелководных фаун Восточно-Европейской и Сибирской платформ. Единственный мелководный (неритовый) таксон, который так или иначе в биогеографическом отношении связывает Казахстан с Сибирью – это элемент вида *Lenaeodus cf. L. bifida* из маматской свиты хр. Чингиз. Кроме Сибири, этот вид встречается также на Северо-Востоке России и на Аляске [Dumoulin et al., 2002].

С Восточно-Европейской платформой в изученных комплексах Казахстана и Киргизии, помимо большого количества океанических космополитных видов, нет ни одного общего мелководного таксона.

Принципиальное биогеографическое различие фаун Центрально-Азиатского пояса и палео-континента Балтика выявляется при сравнении среднеордовикских конодонтов Южного Урала (караколь-михайловская толща) и Урумбайского района Северного Казахстана (вулканогенная толща) (рис. 54).

Принципиальное биогеографическое различие фаун Центрально-Азиатского пояса и палео-континента Балтика выявляется при сравнении среднеордовикских конодонтов Южного Урала (караколь-михайловская толща) и Урумбайского района Северного Казахстана (вулканогенная толща). Несмотря на современную территориальную близость этих местонахождений (900 км),
комплексы конодонтов караколь-михайловой толщи (Толмачева и др., 2012) и вулканогенной толщи Северного Казахстана не имеют общих мелководных таксонов. Это является признаком того, что Казахстан в ордовикское время находился на значительном расстоянии от Балтики и Сибири и значительно ближе к окраине Восточной Гондваны. Присутствие сибирского таксона *L. bifida* в маматской свите на хр. Чингиз может быть свидетельством более близкого расположения островодужной системы Чингиза к Сибирской платформе (рис. 55).

Однако на определение даже относительного расположения континентов сильно влияет динамика водных масс, в том числе поверхностных и глубинных течений. Все возможные реконструкции циркуляции вод в ордовикском периоде, включая компьютерное моделирование с учетом расположения континентов, уровнем моря и содержания углекислого газа в атмосфере указывают на существование в ордовике восточных экваториальных течений и западных противотечений вдоль северной окраины Гондваны [Hertmann et al., 2004] (рис. 55). Возможные экваториальные течения от окраины Восточной Гондваны к Казахстану могли способствовать расселению неритовых форм конодонтов на достаточно большие расстояния.
ХАРАКТЕР ОРДОВИКСКИХ ОКЕАНОВ
И БИОРАЗНООБРАЗИЕ КОНОДОНТОВ

До начала XXI в. ордовикский период считался временем парникового периода с высокими температурами, высоким уровнем стояния океанических вод и обширными мелководными бассейнами с широкими карбонатными шельфами в приэкваториальных областях [Walker et al., 2002]. Данные о теплом ордовикском климатах основывались на повышенном уровне моря и на данных по изотопии кислорода, показывающей аномально высокие средние температуры, достигающие 60–70° в эвкваториальных широтах. Эти завышенные нереальные значения старались объяснить вторичными изменениями карбонатов ордовика и значительным облегчением первоначального δ18O, а также эволюцией изотопного состава морской воды [Veizer et al., 1999; Azmy et al., 1998; Kasting et al., 2006].

Все попытки более тщательного отбора анализируемого материала и совершенствование лабораторных методик не изменили принципиально ситуацию; анализы показывали низкие значения соотношения изотопов кислорода, свидетельствующие о повышенных температурах [Shields et al., 2003].

Исключительно высокие значения температур для раннего ордовика и значительно более низкие значения для среднего и позднеордовикского времени получили недавно новое объяснение. Было выдвинуто предположение, что соотношения изотопов кислорода показывают правильные значения, и для терминального кембрия и начала ордовика был действительно аномально теплый климат, который к середине дарривильского времени сменился постепенным похолоданием [Trotter et al., 2008].

Подтверждением аномально высоких температур в позднем кембрии является широкое развитие черносланцевых отложений, характерных для дизаэробных и анаэробных обстановок [Berry, Wilde, 1978; Raiswell, Berner, 1986; Zhuravlev, Wood, 1996; Gaines et al., 2005; Hough et al., 2006; Hurtgen et al., 2009; Gill et al., 2007]. Считается, что высокие температуры вызывали обеднение вод кислородом, что приводило к расширению площади и объема зоны кислородного минимума в бассейнах [Rowland, Shapira, 2002]. При этом, учитывая, что в ордовикское время атмосфера была насыщена углекислым газом [Patzkowsky et al., 1997; Nardin et al., 2010], одновременно с недостатком кислорода океанические воды обладали повышенной кислотностью [Kump et al., 2009]. Это приводило к повышенной растворимости карбонатов и повышенному уровню карбонатной компенсации, а также общей недонасыщенности открытых океанических вод карбонатами.
В связи с имеющимися данными в настоящее время доказано, что в приэкваториальных океанических глубоководных бассейнах позднего кембрия и раннего ордовика преобладали восстановительные условия [Landing, 2012] (рис. 56). Широкое распространение зон кислородного минимума объясняется высоким стоянием океанических вод, что, наряду с расположением континентов в приэкваториальной области, привело к развитию в позднем кембрии и раннем ордовике так называемого глобального периода гиперпотепления [Landing, 2012]. Для этого времени, как и для других аналогичных событий в истории Земли, характерна пониженная циркуляция или стагнация океанов.

В это время в приэкваториальных мелководных морях Лаврентии, прогревавшихся сильнее, чем открытого моря, из-за снижения растворимости карбонатов шло отложение мощных преимущественно водорослевых/хемогенных карбонатов [Pruss et al., 2010]. Вероятно, что вследствие берегового «даунвеллинга» с погружением на дно засолоненных тяжелых вод, наблюдавшегося в экстремально теплых прибрежных условиях, область осаждения водорослевых/микробиальных карбонатов увеличивалась.

Такой же тип осадконакопления, как в Лаврентии, характерен и для конца кембрия — нижнего ордовика на Сибирской платформе, где накапливались мощные толщи доломитов и пелитоморфных известняков [Каныгин и др., 2007]. Резкое увеличение роли биокластических известняков в разрезах Лаврентии приходится на конец раннего ордовика, что объясняется насыщением мелководных бассейнов кислородом и соответствующим увеличением растворимости карbonатов [Pruss et al., 2010]. Насыщение карбонатами воды снизило затраты организмов на построение карбонатного скелета и привело к увеличению их доли в экосистеме [Pruss et al., 2010]. То есть смена восстановительных обстановок на окислительные, так же влияющая на растворимость карбонатов, как и температура воды, в эпиконтинентальных морях Лаврентии постепенно происходит с конца раннего ордовика.

В интервале от позднего кембрия до позднего ордовика (и в целом для палеозоя) отмечено устойчивое сокращение площадей карбонатного и увеличение терригенного шельфа [Walker et al., 2002], что также может быть связано с похолоданием и формированием циркуляционной системы океана. В качестве причин похолодания рассматривают комплекс событий, включающий значительное падение содержания углекислоты в атмосфере благодаря интенсивному выветриванию изверженных пород и продвижение континентов в субтропическую зону конвергенции [Young et al., 2009; Lefebvre et al., 2010; Nardin et al., 2010].

Реконструкции поверхностных течений и термогалинской циркуляции океанов ордовикского периода также привлекают внимание исследователей [Wilde et al., 1989; Christiansen, Stouge, 1999]. Рассматриваются модели, построенные как на основе фактического (главным образом палеонтологического) материала, так и с использованием компьютерного моделирования [Herrmann et al., 2004]. Последние реконструкции достигают
большой детальности, в них выделяются разнообразные мелкие течения и рассчитываются средние температуры с сезонными флуктуациями. Согласно этим построениям, а также на основе биогеографического районирования по некоторым группам фауны (хитинозои и граптолиты [Vandenbrouck et al., 2010] в позднем ордовике циркуляционная система океанов и климат были подобны существующим в настоящее время. Публикации, в которых бы рассматривались аналогичные построения для позднего кембрия и раннего ордовика, отсутствуют.

Однако все реконструкции палеотечений и циркуляции океанов основываются на изучении относительно мелководных отложений шельфов. В то же время именно осадки, накапливающиеся в обстановках океанического ложа вдали от постоянных источников сноса терригенного материала, являются показателем состояния циркуляционной системы океанических вод, напрямую связанной с климатом. Разнообразие фауны, обитающей в толще воды как в пелагических, так и в неритовых обстановках, также является прямым следствием химизма воды и, значит, может свидетельствовать о состоянии циркуляционной системы океанов.

КРЕМНИСТЫЕ ПЕЛАГИЧЕСКИЕ ОТЛОЖЕНИЯ КАЗАХСТАНА

Строение кремнистых разрезов Казахстана, как будет показано ниже, подтверждают существование теплого stratifiedированного океана в позднем кембрии и раннем ордовике и постепенное становление циркуляционной системы в океанических бассейнах. Однако разрушение stratifikasiации виды и обогащение кислородом глубинных вод, связанное с началом циркуляции, фиксируются намного раньше, чем предполагалось по данным изучения более мелководных отложений.

Наиболее отчетливо характер изменения кремнистой последовательности во времени проявлен в разрезах бурбайтальской свиты Юго-Западного Прибалхашья и в ирадырской и ишкеольмесской свитах Аксу-Ирадырского района (Северный Казахстан).

Верхнекембрийский — нижнеордовикский (до середины зоны *Prioniodus elegans*, нижняя треть плоского яруса) интервал бурбайтальской свиты сложен конденисированными темноцветными кремнистыми отложениями с грептолитами, каррикаридами, бактериями и фекальными пеллетами (рис. 57). Средние мощности этого stratigraphическог интервала не превышают 30–40 м. Сероцветные кремни в ирадырской и ишкеольмесской свитах в пределах тренадакского и низов плоского яруса содержат множество створок членистоногих, конодонтов и их пеллеты. В куксениской свите Северной Бутпак-Далы фекальные пеллеты встречаются stratigraphически выше на уровне верхней части зоны *Oepikodus evae*, но исчезают в более молодых кремнях самых верхов этой зоны, а также в перекрывающих отложениях даинского яруса. Такой же тип кремней с обильными фаунистическими остатками наблюдается в пределах зоны *Paroistodus proteus* в Австралии [Percival, 2012].

Высокий уровень конденсации кремнистых разрезов наиболее вероятно был связан с восстановительными бескислородными условиями, пониженной продуктивностью радиолярий и повышенной растворимостью кремнезема. На существование бескислородных обстановок указывает присутствие в изученных разрезах фекальных пеллет, сохранивших свою структуру в конденсированном осадке из-за отсутствия процессов дезинтеграции органического вещества. С середины плоского времени в разрезах бурбайтальской свиты в толще сероцветных кремней начинают появляться красные кремни, в которых, помимо порообразующих радиолярий и спикул губок, а также конодонтов и фосфатных брахиопод, отсутствуют какие-либо органические остатки (рис. 57; прил. 3, рис. 11).

Разрезы зоны *Oepikodus evae*, *Periodon flabellum / P. macrodentatus*, *Paroistodus horridus* значительно более краснокветные и мощные, чем ниже лежащие отложения, а зона *Peri odon aculeatus* практически повсеместно сложена мощными красноцветными непрозрачными (только иногда полупрозрачными) кремнями. Значительно более высокие скорости накопления дарривильских отложений определяются не только по резко возросшей мощности конодонтовых зон, но и по значительно более редкой конодонтовых элементов в породе.

Таким образом, формирование верхнекембрийских — раннефлоссийных конденисированных кремней происходит в отделках слабой водной циркуляцией, развитием обширных зон кислородного минимума, низкой биопродуктивности и повышенной растворимости кремнезема. Это вполне соответствует
интерпретации раннеордовикских приэкваториальных шельфовых теплых морей, с развитыми анаэробными обстановками и низкой насыщенностью карбонатами [Pruss et al., 2010].

Накопление более мощных красноцветных кремнистых осадков во второй половине фло ского времени связано с двумя факторами: повышением продуктивности породообразующих организмов (радиолярий) и уменьшением растворимости кремнезема, что позволяло принципиально большему количеству раковин радиолярий достигать дна и накапливаться в осадках.

Это возможно только при увеличении содержания кислорода в океанических массах как в связи с понижением температур, так и усилением циркуляции океанических вод, следы которого на шельфах континентов отмечаются только в середине – конце дарвинского времени. Данные по глубоководным отложениям показывают, что термогалинная циркуляция в открытых бассейнах установилась намного раньше, чем предполагалось, — уже в конце раннего ордовика.

Надо отметить, что строение кремнистых толщ значительно влияет на возможность изучения конодонтов, обитавших в открытом океане. Достаточно представительную коллекцию конодонтов можно извлечь только из богатых
конодонтами кремней верхнего кембрия — нижней части среднего ордовика. Более молодые кремни в основном непрозрачны, а конодонты в них встречаются значительно реже. Также при изучении кремней в основном удается обнаружить 3–4 доминирующих вида. В связи с этим полный таксономический состав конодонтовых фаун, более молодых, чем раннедарривильские, до сих пор неизвестен.

Состояние океанов, безусловно, оказывало влияние и на осадконакопление на шельфах. Как было отмечено ранее, в позднем кембрии и раннем ордовике на приэкваториальных мелководных шельфах Лаврентии [Pruss et al., 2010] и Сибири шло формирование мощных толщ водорослевых и микробиальных карбонатов. В это же время на мелководном шельфе Восточно-Европейской платформы, находящейся на более высоких широтах, чем Лаврентия, шло накопление терригенных толщ при минимальном количестве карбонатов. Это скорее всего связано как с относительно более низкими температурами, так и с пониженным содержанием кислорода в поверхностных водах, что в совокупности значительно снизило насыщенность воды карбонатами. Однако процесс угнетения накопления карбонатов не требовал таких низких температур, как в настоящее время при современном высоком содержании кислорода в воде. Кроме того, относительно высокие температуры вплоть до широт 45° в раннем ордовике доказываются на основании литологического строения кратонов Гондваны [Scotese et al., 1999].

Возможно, что сходство геохимических (и температурных) условий среды и было тем фактором, который позволил в позднем кембрии и раннем ордовике приэкваториальной океанической фауне Казахстана обитать на мелководных шельфах Восточно-Европейской платформы, при том что в своем климатическом поясе в Казахстане, Сибири и Лаврентии эти же глубоководные виды не проникали далеко на мелководье. Это было более простое объяснение такому распространению фауны, чем ранее дала С. В. Дубинина и исследователи [Дубинина, 2000; Rasmussen, 1998], которые объясняли этот факт стабильностью высоких термальных условий мелководных областей, т. е. их обитанием на больших глубинах в более низких широтах. Низкое разнообразие акритарх и хитинозой в Балтоскандии вплоть до среднего ордовика также, возможно, могло быть связано с восстановительными условиями обстановок среды обитания, обедненной кислородом [Hints et al., 2010].

РАЗНООБРАЗИЕ КОНОДОНТОВ ЗАПАДНОЙ ЧАСТИ КАЗАХСТАНА И СЕВЕРНОЙ КИРГИЗИИ

Для оценки разнообразия фауnistических сообществ, в том числе и сообществ геологического прошлого, используют два параметра — видовое разнообразие (количество видов) и экологическое разнообразие, или выравненность сообщества, определяемое по численности отдельных таксонов.

Видовое разнообразие фаулистических комплексов в палеонтологии оценивается через таксономическое разнообразие, т. е. количество видов, задокументированных в пробе. Такое понятие разнообразия отвечает в некотором приближении (в сторону бета-разнообразия) понятию альфа-разнообразие, или разнообразию современных сообществ, предложенному в результате изучения современных растительных сообществ [Whittaker, 1960, 1972]. При количестве видов в одном или нескольких разрезах в пределах одной фации, рассчитанных на какие-либо геостратиграфическое подразделение, — зону, горизонт или просто на отрезок времени, например миллионов лет, то что мы называем альфа-разнообразие, безусловно, еще больше приближается к бета-разнообразию, учитывая небольшие флуктуации фаций по разрезу. Однако в палеонтологии понятие бета-разнообразие может рассматриваться в гораздо больших пространственных границах, например как биоразнообразие в пределах различных фаций Балтоскандийского бассейна в определенный интервал времени. Понятие гамма-разнообразие отвечает таксономическому разнообразию на разных палеоконтinentах, например в пределах одного климатического пояса.

Очевидно, что альфа-разнообразие конодонтов находит в обратной зависимости от скорости осадконакопления отложений, которая чем меньше, тем больше количество видов в пробе. Это утверждение абсолютно верно в масштабе геологического времени, когда в одном слое накапливаются предковые и потомковые формы одних филогенетических линий, увеличивая тем самым количество видов в пробе. Но основным механизмом повышения разнообразия в случае увеличения времени накопления осадка считается суммирование бета- и альфа-разнообразия сообщества за счет их неоднократного пространственного смещения из-за постоянных изменений обстановок окружающей среды в интервале рассматриваемого времени [Tomasovych, Kidwell, 2010].
Т. Ю. Т о л м а ч е в а

В результате чем больше время накопления осадков, тем больше первичное алфав-разнообразие переходит в бета-разнообразие, для которого характерно большое количество видов. Повышенное таксономическое разнообразие конодонтовых фаун глауконитовых песчаников северо-западной части Восточно-Европейской платформы и отложений нижней раннеордовикской части бурлайтальской свиты, по всей вероятности, связано именно со значительной конденсированностью отложений.

В качестве базовой единицы таксономического разнообразия (альфа-разнообразие) конодонтов в данной работе рассматривается количество видов в отдельной пробе.

Далеко не всегда удается получить достоверное представление о полном таксономическом составе комплекса конодонтов. На практике оценка разнообразия конодонтов в первую очередь определяется размером полученной выборки конодонтов, т. е. размером пробы и содержанием в ней конодонтов. То, что размер образца влияет на количество обнаруженных видов, было известно с самого начала развития статистических методов оценки биоразнообразия [Peet, 1974; Soetaert, Heip, 1990] (рис. 58). Работы по активной разработке и уточнению различных математических методов учета неравновесности первичных данных и приведению их к единой форме для более адекватного отражения первичных данных ведутся до сих пор.

Подсчет найденных видов конодонтов при выборке разного количества экземпляров конодонтов (25, 50, 100, 200...) (из проб леэтсестой и волховской свит, р. Лава) показал результаты (рис. 59) [Tolmacheva, 2001], сходные с полученными данными в сходных экспериментах по выявлению биоразнообразия современных сообществ (рис. 58) [Soetaert, Heip, 1990]. Показано, что при низкой доминантности сообщества (когда 3–4 вида присутствуют примерно в одном количестве) для получения полного таксономического состава комплекса необходимо и достаточно выделить не менее 500 экземпляров конодонтов (рис. 59). При высоком уровне доминантности (более 70% одного вида) и высоком разнообразии сообщества 500 экземпляров недостаточно для получения полного таксономического состава. Необходимо большее количество экземпляров коллекции.

Однако практический опыт выделения конодонтов из разных типов отложений ордовика в Казахстане показывает, что получить коллекцию конодонтов, состоящую из более чем нескольких сотен элементов, является сложной задачей. Содержание конодонтов в пробах, считающихся высокопродуктивными, редко превышает несколько десятков — сотню элементов на 1 кг породы.

Исключение составляют конденсированные отложения северо-западной части Восточно-Еврокондонтов в разрезе латорпского и волховского ярусов на р. Лава (Ленинградская область). При низком разнообразии и относительной выравненности сообщества полный учет количества видов достигается при сборе не менее 800 экземпляров конодонтов в пробах зон Paroistodus proteus и Baltoniodus navis.
ропейской платформы, где количество конodontовых элементов на 1 кг пробы может достигать десятка тысяч. Особенно непредставительным для оценки полного таксономического состава конodontовых фаун оказывается материал из скважин, где объем пробы сам по себе ограничен. В результате во многих местонахождениях, даже удаленных примерно определить возраст по конодонтам, мы получаем представление только о немного доминирующих видах. Таким образом, для значительной части изученных территорий полное биоразнообразие остается скрытым, что уменьшает степень достоверности интерпретаций любых глобальных построений, в том числе в области био- и палеогеографии.

Степень выравненности сообществ определяется соотношением численности отдельных видов. За редким исключением в экосистемах среди организмов, принадлежащих к одному трофическому уровню, экологической или таксономической группе, большая часть численности или биомассы достигается за счет вклада очень немногих видов [например, McGill et al., 2007]. Так, в изученных конodontовых комплексах 70–80% численности стабильно составляют элементы только 3–4 видов, между которыми соотношение меняется от пробы к пропе по разрезу или местонахождению. Предполагается (и часто подтверждается прямым наблюдением), что высокая степень доминанты или слабая степень выравненности характерны для сообществ, испытывающих стресс в ходе каких-либо абия- или биотических событий [например, Scrosati, Heaven, 2007].

Для оценки выравненности сообществ в палеонтологии, как правило, широко используются два индекса — Симпсона и Шеннона или Шеннона–Уивера [Pielou, 1974; Peet, 1974; Sagar, Singh, 1999]. Если в первом индексе большую роль играют доминирующие таксоны, то в последнем большей вклад в значение индекса вносят редкие виды, встречающиеся в единичных экземплярах. В связи с этим применение индекса Шеннона–Уивера есть практическое требование: количество видов и размер пробы сравниваемых комплексов должны быть примерно одинаковыми [Bakonov, 2000].

Таксономическое разнообразие конodontовых фаун в отложениях ордовика изученных районов Центрально-Азиатского пояса очень изменчиво. Если из проб кремнистых конденсированных отложений нижней части бурбайтальской свиты выделено не более 19 видов, то максимальное количество видов, обнаруженных в карбонатных породах найманской свиты, достигает 35.

Альфа-разнообразие конodontов из кремнистых отложений сильно зависит от того, выделяются ли комплексы растворением или изучаются непосредственно в породе. Химическое выделение конodontов дает возможность идентифицировать значительно большее количество видов. Выделение конodontов из кремнистых пород Казахстана сопоставимо с таковым из более мелководных карбонатных отложений этого же региона и составляет примерно 18–25 видов. Однако уже в среднем ордовике таксономический состав конodontов из отдельных местонахождений мелководных пород Казахстана значительно превышает альфа-разнообразие глубоководных сообществ (рис. 60). Это отчетливо видно на примере узунбулакской и найманской свит, откуда получено более тысячи экземпляров конodontов и выявляется полное альфа-разнообразие комплексов.

Кроме того, независимо от способа изучения конodontов в конденсированных отложениях нижнего и нижней части среднего ордовика обнаруживается принципиально большее количество видов, чем в верхней части среднего и верхнего ордовика. Это только частично определяется конденсацией кремнистого осадка в начале ордовикского времени до зоны Prioniodus elegans. Главным же образом меньше количество видов определяет общим снижением разнообразия конodontов во второй половине ордовика, которое также наблюдается и по карбонатным, более мелководным фаунам (рис. 60).

Кривая, составленная с учетом количества видов в изученных местонахождениях кремнистых пород по ярусам и частям ярусов (для дарривильского и сандбийского веков), по сути является отражением альфа-разнообразия пелагических глубоководных сообществ конodontов. Во-первых, кремнистые породы относятся к одной и той же глубоководной фауне, а во-вторых, разнообразие конodontов во всех кремнистых местонахождениях одного возраста одинаковое, а различия, если они и выявляются, связаны с разной степенью качества отбора пробы и сохранностью конodontов. На кривой отражается значительно большее альфа-разнообразие пелагических конodontов в раннем ордовике, чем в среднем и позднем. В дапинское время и с верхней половины дарривильского века конodontовые фауны казахстанского океана становятся бедными в таксономическом отношении, подтверждая то, что на протяжении большей части ордовика океанские воды были олигоэфроальными [Martin, 1996].
Оценка альфа-разнообразия неритовых фаун Казахстана значительно менее достоверна, так как в большинстве местонахождений полный таксономический состав комплексов не выявляется из-за небольшого объема проб или низкого содержания конодонтов в породе. На рис. 60 показано альфа-разнообразие конодонтов из карбонатных местонахождений. В верхнем тренадоке 8 видов из маматской свиты, в флоском веке 23 вида из кенташской толщи и 17 видов из акжальской свиты. Для дарривильского века указано количество видов в наиболее многочисленных коллекциях из найманской, узунбулакской и тасбулакской свит. Хотя этих данных недостаточно для корректного сравнения альфа-разнообразия в кремнистых и карбонатных породах, представляется, что в нижнем ордовике оно вполне сопоставимо, а в среднем разнообразие неритовых мелководных форм значительно превышает количество открытоморских видов. Кривая бета-разнообразия мелководных конодонтов подтверждает это соотношение разнообразия океанических и мелководных конодонтовых фаун в течение ордовика.

Таксonomicкое разнообразие конодонтов по всей территории западной части Центрально-Азиатского пояса отвечает бета-разнообразию, так как в него включаются виды из разных фаций палеобассейна. Отмечается повышение разнообразия фаун к флоскому времени и его снижение начиная с поздней части лланвирна (рис. 60, 61), что говорит о едином количестве экологических ниш на всем протяжении шельфа, не зависящем от значений глубин. В среднем ордовике в Балтоскандии, переместившейся ближе к экваториальным водам, не наблюдается значительного повышения альфа-разнообразия конодонтовых сообществ, что также может быть связано с характером палеобассейна, развитого на рамовой окраине континента, где отсутствует большее разнообразие экологических ниш. В верхнем ордовике бета-разнообразие конодонтов Балтоскандийского палеобассейна увеличивается в связи со сближением с Лаврентией и проникновением в бассейн североамериканских видов.

Для многих групп современной фауны и флоры характерен значительный меридиональный градиент увеличения разнообразия от полярных к тропическим широтам [Rozenzweig, 1995; Roy et al., 1998]. Несмотря на это общее правило, многие группы фауны, в том числе и морские, являются исключениями. Например, было доказано, что на видовое богатство сообществ диатомовых водорослей, как, возможно, и на сообщества других микроорганизмов, не влияют ширины морских бассейнов [Hillebrand, Azovsky, 2001]. Анализ пространственного распространения планктонных фораминифер также показал, что их сообщества на тропических широтах не явля-
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Рис. 61. Динамика альфа-бета-разнообразия нижне- и среднеордовикских конодонтов в районе Ыечанг провинции Хубей (Южный Китай), по [Wu et al., 2010]

Рассматривая таксономическое разнообразие конодонтов, следует отметить, что видовое богатство этой группы фауны подчиняется распределению циркуляционных ячеек на поверхности океанов [Rutherford et al., 1999]. Наибольшее видовое разнообразие планктонных фораминифер приходится на средние широты (около 30°), для которых характерны развитие глубокого постепенного термоклина и соответственно существование большого количества экологических ниш, чем в тропических и полярных широтах, где температуры воды холодные, подступающие ближе к поверхности океанов [Rutherford et al., 1999].

Предполагается, что это же принцип заложен в распределении других современных планктонных групп организмов — крылоногих моллюсков и хетогнат [Rutherford et al., 1999].

Исследования ископаемой фауны подтвердили, что для каждой группы фауны наибольшее разнообразие связано с оптимальным для нее параметром окружающей среды и в том числе с оптимальными температурами. Так, хитинозои в ордовике максимально разнообразны в полярных и субполярных областях, а граптолиты в экваториальных [Vandenbroucke et al., 2010]. С другой стороны, бентосные организмы, такие как брахиоподы, двустворки и гастроподы, на протяжении фанерозоя выказывают наибольшее разнообразие в экваториальных областях как следствие более высокой скорости видообразования [Powell, 2007; Valentine, Jablonski, 2010].

Таким образом, разнообразие конодонтов раннего ордовика для Казахстана и такого хорошо изученного региона, как Балтоскандия, сравнительно одинаково, несмотря на то, что эти регионы в начале ордовика находились на разных палеоширотах. В первой половине фосского века раннего ордовика бета-разнообразие в Казахстане и в других низкоширотных палеобассейнах, по всей вероятности, остается высоким.

Начиная со среднего ордовика альфа-разнообразие конодонтов из карбонатных отложений Казахстана резко увеличивается и наблюдается его постепенное снижение в течение второй половины среднего и позднего ордовика. Динамика альфа-разнообразия конодонтов раннего и среднего ордовика, отличная от казахстанской, наблюдается в разрезах Южного Китая [Wu et al., 2010] (рис. 61). Максимальное разнообразие (около 30 видов) здесь приходится на фосский ярус с постепенным снижением количества таксонов до 20 и менее в дапинское и даррильское время.
Интересно отметить, что если флоский пик разнообразия конодонтов в Южном Китае Р. Ву [Wu et al., 2010] связывает с теплым климатом, а в дапинское время вымирание – с похолоданием, то увеличение разнообразия в раннедарривильское время он соотносит с импактными событиями, характерными для этого времени и прослеженными главным образом в Балтоскандинии [Schmitz et al., 2006]. Импактные события, возможно, могли влиять на увеличение альфа-разнообразия фаун, однако раннедарривильский пик на уровне альфа-разнообразия наблюдается только в палеобассейнах, расположенных в низких широтах (например, в Казахстане), тогда как в высоких он прослеживается только на уровне бета-разнообразия, обозначающем увеличение градиента фаун в пределах фациальных рядов одного палеобассейна.

Таким образом, можно сделать следующие выводы:
1. В раннем ордовике (флоский ярус) меридиональный градиент разнообразия конодонтовых фаун достаточно слабо выражен при общем очень высоком уровне альфа-разнообразия на всех палеоширотах (рис. 62).
2. В низах среднего ордовика (дапинский ярус) разнообразие в целом уменьшается на всех палеоширотах.
3. В дарривильском ярусе разнообразие конодонтов резко увеличивается в низких широтах при относительно его стабильном состоянии или небольшом снижении в палеобассейнах, расположенных в более холодных водах, например в Балтоскандии.

4. В верхах среднего и позднем ордовике наблюдается постепенное общее снижение количества видов, в том числе в низких широтах, вероятно, в связи с развивавшимся общим похолоданием.

Такая динамика фаун в мире хорошо согласуется с предложенной интерпретацией раннего ордовика как теплого периода со стагнированным океаном, в котором хорошо развитый термоклин создавал большое количество экологических ниш для видообразования. Начавшаяся в конце флосского времени термогалинная циркуляция, связанная с уменьшением общей температуры климата, привела к вымиранию старых фаун и появлению новых, что уменьшило в дапинское и дарривильское время альфа-разнообразие и увеличило бета-разнообразие конодонтов. В целом при этом увеличился градиент таксономического разнообразия фаун между полюсами и экватором. Еще большее похолодание в позднем ордовике ведет к общему снижению разнообразия конодонтов.
ПАЛЕОЭКОЛОГИЯ КОНОДОНТОВ, ИХ ОБРАЗ ЖИЗНИ И ТРОФИЧЕСКИЕ ВЗАИМООТНОШЕНИЯ

Несмотря на более чем 150-летнюю историю изучения конодонтов, мы удивительно мало знаем об их образе жизни и экологических взаимоотношениях со средой или другими организмами. Это во многом связано с тем, что таксономические составы конодонтовых комплексов, являющиеся основой для экологических анализов, в большинстве случаев представлены неполно. Особенно сильны тафономические и лабораторные потери среди мельчайших и наиболее крупных конодонтовых элементов, создается количественный перекос в сторону видов с более крупными и крепкими элементами. Кроме того, прямые актуалистические подходы к взаимоотношениям в сообществах конодонтов затруднены в связи с ограниченностью данных об анатомии конодонтового животного и, возможно, несколькими отличными параметрами биоты в палеозое по сравнению с современностью.

Буквально единицы исследователей использовали анализ частотного распределения конодонтов по размеру для выявления особенностей онтогенетического развития определенных видов [McHargue, 1982] или определенных условий среды обитания [Luo et al., 2006; Luo et al., 2008]. Однако при наличии стандартного выделенного палеонтологического материала результаты такого рода исследований неоднозначны и спорны из-за сортировки и потери конодонтов в процессе осадконакопления и лабораторной обработки. Перспективы дальнейших реконструкций экологических взаимоотношений этой группы фауны во многом связаны с накоплением статистического материала по структуре и составу конодонтовых популяций, а кроме того, с находками конодонтовых элементов в желудках ископаемых хищников или фекальных пеллетах. Такие находки, с одной стороны, указывают на место конодонтов в пищевых цепях палеозойских морей, а с другой — являются основой для выявления поведенческих особенностей как организмов, которые питались конодонтами, так и самих конодонтов. Однако находки, прямо свидетельствующие о трофических связях конодонтов, встречаются относительно редко и, как правило, они единичны [Williams, 1992; Leslie, 1997].

Единственным известным в мире на настоящее время исключением являются верхнекембрийские — нижнеордовикские кремнистые отложения Сакмарской зоны Южного Урала и ряда свит (бурубайтальской, акдымской, ушкызьской) кремнистого состава верхнего кембрия – среднего ордовика Центрального Казахстана, где фекальные пеллеты, состоящие либо из ювенильных конодонтовых элементов, либо из мельчайших обломков створок пелагических членистоногих, на некоторых стратиграфических уровнях находятся в массовом количестве [Tolmacheva, Purnell, 2002]. Присутствие в породе фекальных пеллет характерно только для относительно узкого интервала верхов кембрия и низов ордовика (вплоть до верхней части зо-
нны Prioniodus elegans), где их сохранность объясняется бескислородными обстановками как в толще воды, так и в осадке. В более молодых кембрийских отложениях фекальные пеллеты отсутствуют, что, наиболее вероятно, связано с образованием кислородом донных вод. Кроме того, фекальные пеллеты, сохранявшие свою структуру в конденсированном осадке, после разложения органического вещества свидетельствуют об отсутствии переотложения осадка и, следовательно, о минимальной сортировке конодонтового комплекса. Это также подтверждается обилием ювенильных конодонтовых элементов на этих стратиграфических уровнях, что совершенно не характерно для комплексов, выделенных из карбонатных пород.

Сходные конодонтовые комплексы, включающие группировки элементов, известны только из кембрийских отложений складчатой зоны Лачлан (Lachlan) юго-восточной части Австралии [e.g. Murray, Stewart, 2001], однако работы по изучению этого материала ограничиваются анализом стратиграфического распространения видов и палеогеографических особенностей комплексов.

Первые данные об единичных группировках конодонтовых элементов в кембрийских отложениях ордовика Казахстана были получены более 20 лет назад [Барсков, Новиков, 1984], но основная и большая коллекция этих палеонтологических объектов была собрана авторами проекта в течение более чем пятнадцати полевых сезонов в Центральном Казахстане и на Южном Урале. Группировки конодонтовых элементов встречались практически во всех кембрийских свитах западной части Центрально-Азиатского пояса в узком стратиграфическом интервале от верхнего кембра до нижнего аренига.

Коллекции авторов содержат несколько тысяч группировок конодонтовых элементов и десятки тысяч отдельно расположенных элементов. Наиболее изучены в настоящее время конодонты из бурубайтальской свиты Юго-Западного Прибалхаши [Tolmacheva, Purnell, 2002; Tolmacheva et al., 2004].

Согласно последним представлениям, кембрийские, преимущественно биогенные, отложения бурубайтальской свиты были сформированы в относительно глубоководном бассейне на значительном удалении от возможных источников терригенного сноса (Tolmacheva et al., 2004). Палеонтологические отложения в кремнеземных и не разнообразны, а комплекс фауны, характеризующий свиту, типичен для черносланцевых и кембрийско-терригенных отложений нижнего палеозоя [например, Ethington, 1981]. Конодонты встречаются по всему стратиграфическому интервалу свиты, но их количество в породе варьирует от нескольких элементов на квадратный метр поверхности кремней до нескольких тысяч. Многочисленные группировки конодонтовых элементов, как было отмечено выше, встречаются только в нижнеордовикской части свиты. Их максимальная концентрация приходится на верхнюю половину зоны Paroistodus proteus. Из наиболее богатых конодонтами слоев желто-серого кремня на этом стратиграфическом уровне было выделено более 400 группировок конодонтовых элементов. Для сравнения были использованы коллекции группировок конодонтов нижнего ордовика из других разрезов бурубайтальской свиты. Каждая группировка состоит исключительно из конодонтовых элементов одного вида, при этом в группировках очень редко наблюдаются прижизненные или приближенные к ним структуры аппаратов; во многих наиболее сохранившихся группировках элементы сильно сближены. Многие группировки имеют овальную или круглую форму. Отсутствие органического вещества фекальных остатков не удивительно; в целом в кремнях на этом стратиграфическом уровне не сохраняется органическое вещество. Более того, часто не сохраняется и первый фосфатный состав конодонтовых элементов, во многих случаях конодонты состоят из кремнезема или представлены пустотами.

Если группировки с конодонтами были сразу замечены при просмотре образцов породы, то скопления, состоящие из мельчайших фрагментов створок членистоногих, не привлекали внимания до последнего времени. Детальное изучение материала показало, что сгустки из измельченных членистоногих намного многочисленней, чем пеллеты из конодонтов и, по всей вероятности, тоже являются фекальными пеллетами. Размеры этих скоплений в большинстве случаев идентичны размерам пеллет, содержащих мелкие фрагменты. Так, что мелкие фрагменты, включающие мелкие ювенильные конодонтовые элементы. То, что мелкие фрагменты, встречающиеся в фекальных пеллетах, принадлежат членистоногим, было установлено средствами электронной микроскопии, позволяющей увидеть на поверхности фрагментов структуру, характерную для створок каринокарид (Vannier et al., 2003). Кроме того, в пеллетах нередко сохраняются мельчайшие шипы, характерные для терминальной части карипаксов.

Общая картина состава и строения фекальных пеллет, можно отметить, что пеллеты, состоящие из размельченных членистоногих, гораздо более распространены, чем группировки с конодонтовыми элементами. Размеры таких пеллет практически никогда не превышают 0,3–0,4 мм.
Фекальные пеллеты с конодонтами всегда состоят из элементов одного вида и одного размера, т.е. находящихся на одной онтогенетической стадии. Более 90% пеллет содержат остатки молодых организмов. Их размер от 0,2 до 0,5 мм.

Подавляющее большинство фекальных пеллет содержит от трех до пяти остатков и даже десятки остатков (в случае конических форм) элементов, т. е. остатки одной конодонтовой особи. Пеллеты, содержащие остатки более молодых индивидуумов, как правило, содержат большее число элементов. В таком пеллетах редко содержится полный конодонтовый аппарат. Пеллеты, сложенные остатками крупных взрослых организмов, часто содержат только несколько элементов. Это, возможно, связано с более продолжительным периодом переработки жертвы и постепенным удалением остатков пищи из организма. Тем не менее не исключено, что более крупные пеллеты распадались в толще воды легче, чем маленькие и компактные [Saito et al., 2005].

Несколько крупных (до 5 мм) фекальных пеллет содержит большое количество (до 100 и более) конодонтовых элементов, при этом находящиеся в коллекции крупные пеллеты все представлены разными видами. Несмотря на принципиально большие размеры, каждая из них, как и небольшие пеллеты, содержит элементы одного возраста и одного вида (рис. 63).

В кремнях на разных стратиграфических уровнях встречаются как пеллеты, так и разобщенные конодонтовые элементы. Однако их количества не всегда пропорциональны друг другу. На некоторых уровнях, исключительно богатых конодонтами, их группировки редки, тогда как на некоторых уровнях, исключительно богатых конодонтовыми элементами на единицу площади изученных образцов, т.е. относительно высокая "плотность популяций". Подсчеты и измерения производятся в пределах одной поверхности напластования или тонкого объема для минимизации возрастающего интервала усреднения палеопопуляций, существовавших в относительно длительное время накапливания слоя.

Для изучения и измерения конодонтов и их группировок были специально изготовлены ориентированные шлифы, которые в прозрачных и полупрозрачных кремнях обычно имеют толщину от 0,5 до 2 мм. А в непрозрачных разностях кремней элементы изучались в сколах породы или на поверхностях напластования.

Первичными данными для популяционного анализа конодонтов является размер их отдельных элементов, который у большинства видов определяется длиной зубца или длиной заднего стержня. По этим параметрам выбираются разные классы и строятся частотные распределения разных видов по размеру. Поскольку форма частотного распределения напрямую связана с выбором размерных классов, они для каждого вида подбираются отдельно, исходя из разницы между минимальной и максимальной величиной элемента. При этом допускается, что скорость роста конодонтовых элементов находится в прямой зависимости от их конечного размера и, возможно, от размеров конодонтонносителя.

На основании частотного распределения были построены кривые выживания, отражающие уровень смертности в разных возрастных группах различных видов конодонтов. Кроме того, они в ряде случаев были построены для конодонтовых элементов, находящихся в фекальных пеллетах. Сравнение кривых выживания для одного и того же вида, построенных для отдельных элементов и элементов в фекальных пеллетах, позволило выявить размерную часть популяции, выделяемую хищниками, в том числе теми, которые формируют пеллеты, сохраняющиеся в кремнистом осадке. Разнообразие форм кривых выживания у раз-
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Виды конодонтов свидетельствуют о разнообразии образа жизни конодонтов в пелагических обстановках и сложности их трофических взаимоотношений в сообществе.

Даже поверхностное изучение отдельно расположенных конодонтовых элементов в пеллетах показывает, что потери в популяциях этих организмов были как от естественной смертности, так и от хищничества. Особи конодонтов и членистоногих поедались некими животными, в частности такими, которые могли производить фекальные пеллеты. При этом у разных видов выделялись определенные по размеру части популяций. Не всегда хищичество было нацелено...
на ювенильных особей. Так, кривые выживания, построенные для одного из наиболее широко распространенных видов Paracordylodus gracilis [Lindström, 1955], показали, что хищник, формирующий пеллеты, выделял главным образом среднеразмерную и крупноразмерную части популяции (рис. 64) [Tolmacheva, Purnell, 2002]. Предполагается, что разные виды претерпевали давление хищников на разных онтогенетических стадиях. Уже первые попытки построения кривых выживания для отдельных видов показали различие их форм, что свидетельствует о разнообразии образа жизни конодонтов и сложности их трофических взаимоотношений в сообществе.

Наличие двух разных типов пеллет — мелких и крупных с разным количеством элементов — позволило предположить, что конодонтами пытались по крайней мере два разных хищника, имевших разную поведенческую стратегию. Один хищник потреблял одну или очень редко две жертвы за один раз, тогда как другой, более крупный хищник поедал одновременно до десятка индивидуумов. Средняя стратегия не зафиксирована; ни одна из имеющихся в распоряжении автора группировок не состоит из остатков трех или четырех особей, а несколько группировок, содержащие два индивидуума, состоят из элементов, наившихся на очень ранних онтогенетических стадиях [Tolmacheva, Purnell, 2002]. К сожалению, никакое прямое изучение состава пеллет не отвечает на вопрос, кто же собственно питаются конодонтами и пелагическими хищниками.

Актуалистический подход к реконструкциям фаунистических сообществ пелагиали ордовика, при некоторой неопределенности, позволяет предложить ответ на этот вопрос. В нашем случае возможное решение могут подсказать трофические взаимоотношения хетогнат, которые являются наиболее близким экологическим аналогом конодонтов. При этом основным допущением для всех дальнейших рассуждений является предположение, что конодонты были хищниками, как хетогнаты. Этот спорный вопрос в данной работе не обсуждается, а автор придерживается точки зрения, что по крайней мере большинство пелагических конодонтов с аппаратами, состоящими из конических элементов, были хищниками.

Хетогнаты являются морскими пелагическими хищниками, которые способны активно передвигаться в толще воды. Их основная пища — это мелкие членистоногие — копеподы, в свою очередь потребляющие преимущественно фито и зоопланктон (рис. 65). Хетогнаты являются источником питания для многих групп макрофаун, среди которых и цефалоподы, рыбы, кишечно-половые и многие другие. Форма и размеры этих животных, отнесенных к типу щетинконосных, сходны с конодонтами, и они вполне справедливо считаются их современными экологическими аналогами. Более того, существует мнение, что кембрийские протоконодонты относятся к хетонатам или по крайней мере близки к ним в филогенетическом отношении [Szaniawski, 1982; Szaniawski, 2002].
Содержимое желудков ряда видов этих организмов показало, что большинство наполненных желудков хетогнат содержит остатки одной единственной жертвы, тогда как остатки двух и более жертв составляют только несколько процентов в изученных желудках [Duró, Saiz, 2000; Saito, Kiorboe, 2001]. В подавляющем большинстве хетогнат были найдены копеподы и только в 5% случаях были обнаружены ювенильные хетогнаты. Размеры жертв по отношению к размерам хищников в большинстве случаев соотносились как 1:5, т. е. жертва составляла 20% от длины тела хищника.

Эти закономерности хорошо согласуются с данными по фекальным пеллетам, найденным в отложениях бурубайтальской свиты. Так же как и пищеварительные тракты хетогнат, подавляющее большинство пеллет содержит остатки пелагических членистоногих и намного реже остатки одного, как правило, мелкого ювенильного индивидуума той же фаунистической группы, к которой принадлежит хищник. Т. е. прослеживается сходство стратегии питания между одним из хищников пелагического сообщества ордовика и современными хетогнатами. Возможность того, что маленькие пеллеты принадлежат к древним хетогнатам, несомненно, обитавшим в пелагиали ордовикских морей, не исключена, но маловероятна. Группировки конодонтовых элементов находятся примерно в одинаковом количестве, как в кембрийских, так и в нижнеордовикских кремнях, тогда как в отложениях кембрия и нижнего тремадока протоконодонтов Phakelodus tenuis (Müller), относимых к хетогнатам, встречается множество, а к среднему тремадоку их количество резко уменьшается. Наиболее вероятными хищниками, потребляющими пелагических членистоногих, могли быть настоящие конодонты, которые, помимо общего сходства с хетогнатами по форме и размерам тела, могли иметь и сходный тип питания. Т. е. современная трофическая пара хетогнат — копеподы — хетогнаты — протоконодонты — фитопланктон.
экосистемах могла иметь своего близкого аналого — трофическую пару конодонты — карикариды (рис. 65).

Примечательно, что соотношения размеров тела хетогнат и копепод примерно соответствуют размерам конодонтов и карикариды при условии, что размеры конодонтов в ордовике были такими же, как и у их потомков, найденных в отложениях каменноугольного периода [Briggs et al., 1983]. Но все эти заключения касаются только маленьких пеллет, чьи размеры не превышают 0,5 мм, и состоят они из остатков одного организма.

Возможно, что крупные виды конодонтов потребляли не только ювенильных особей, но и взрослых индивидуумов других, более мелких видов. Однако в пеллетах встречаются не только взрослые небольшие элементы Decoriconus peselephantis s.l., но и наиболее крупные элементы в комплексах таких видов, как Paracordylodus gracilis Lindström и Drepanodus arcuatus Pander. Рассуждения о том, какой вид конодонтов мог потреблять другой вид этой же фаунистической группы, упираются в вопрос, какой конодонт был крупнее. А решение данного вопроса требует допущения: размер элементов прямо пропорционален размерам животного — носителя конодонтовых элементов, что абсолютно не очевидно.

Крупные фекальные пеллеты, состоящие из остатков множества индивидуумов, характерны для более крупного хищника, способного потреблять несколько жертв за один раз. Такая стратегия питания предполагает возможность активного передвижения в толще воды и относительно крупные размеры. Остатки организмов, обладающих такими параметрами, отсутствуют в кремнях бурубайтальской свиты, но их существование в пелагических сообществах Казахстана несомненно. Наиболее вероятно, что такими хищниками являются цефалоподы.

Крупные пеллеты указывают на еще одну интересную особенность образа жизни конодонтов. Очень трудно предполагать, что хищник, продуцирующий эти пеллеты, проявлял такую высокую степень селективности при выборе свободно плавающих жертв, предпочитая конодонтов одного вида и одного возраста. Скорее всего для конодонтов был не характерен разобщенный образ жизни индивидуумов, а они обитали или регулярно объединялись в когорты особей одного поколения. Обитание в когортах очень характерно для современных мелких, активно передвигающихся рыб, способных держаться поблизости друг к другу. Относительно менее активно плавающие морфэкологические аналоги конодонтов — хетогнаты ведут индивидуальный образ жизни, но объединяются по поколениям и видам в суточных и сезонных вертикальных миграциях. Такой образ жизни наиболее вероятен и для пелагических конодонтов.

В настоящее время сделаны только первые шаги в реконструкции трофических связей пелагического сообщества конодонтов кембрия и нижнего ордовика. Выявлены особенности популяционной структуры и подсчитаны потери от хищников только для одного из самых рас пространенных видов сообщества верхов тренадок — низов аренига вида Paracordylodus gracilis Lindström. Выдвинуты обоснованные предложения о трофических взаимоотношениях конодонтов с мелкими пелагическими членистоногими и об их образе жизни. Однако для полной реконструкции трофических взаимоотношений необходимы понимание структуры всех популяций видов биоты и детальное изучение всех остатков их жизнедеятельности.
КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЙ КОНОДОНТОВ

Конодонтовые элементы длительное время, вплоть до 60-х годов классифицировались в качестве отдельных палеонтологических видов в рамках так называемой формальной или моноэлементной номенклатуры. Несмотря на то, что почти с самого начала изучения конодонтов было ясно, что морфологически разные элементы могли принадлежать одному биологическому организму, аналогично зубам млекопитающих и рыб [Scott, 1934; Schmidt, 1934], сама идея моноэлементной номенклатуры была привлекательна своей простотой и находила многочисленных сторонников [Branson, Mehl, 1933]. Кроме того, практика показала, что особенно в верхнем палеозое биостратиграфия строится фактически на одном типе элементов и использование мультиэлементной номенклатуры вместо моноэлементной не дает никаких дополнительных преимуществ.

В качестве типового экземпляра для вновь выделяемых мультиэлементных видов ордовикских конодонтов используется, как правило, наиболее характерный элемент (не обязательно Р элемент). При составлении мультиэлементного вида из уже известных мультиэлементных таксонов используется тот же принцип, при этом не всегда выдерживается правило приоритета наименований, описанных ранее, но менее характерных элементов. В родовые таксоны объединяются виды с одним и тем же составом аппаратов, реже роды отличаются друг от друга не составом аппаратов, а каким-либо стабильным морфологическим признаком элементов либо всего аппарата. Например, Triangulodus отличается от морфологически идентичного рода Acodus гиалиновым составом элементов. Для ордовика характерно большое количество монотипических родов (например Paracordylodus, Cornuodus, Spinodus) и родов, включающих три-четыре филогенетически связанных друг с другом вида.

представлена только одним отрядом — озарко-динидами.
Однако уже со времени опубликования «Третиза» эта классификация критиковалась за отсутствие общего методологического подхода, что вело к разным принципам выделения надродовых таксонов и пренебрежением кодекса зоологической номенклатуры [Stoll et al., 1964; Fähraeus, 1984]. Кроме того, отмечалось, что все версии классификаций вышеперечисленных авторов основаны на стратиграфической последовательности родов и видов, что вносит значительные ограничения и ошибки, связанные с неполной палеонтологических данных в филогенетические взаимоотношения таксонов [Donoghue et al., 2008].
Новые методологические подходы к классификации высших таксонов конодонтов с использованием методов кладистики стали недавно внедряться британскими учеными [Donoghue, 2001; Zhang, Barnes, 2004а; Wickstrom, Donoghue, 2005; Donoghue et al., 2008]. В настоящее время филогенетический анализ проведен только для видов со сложными аппаратами приониодонтиального стиля, расположение и гомология элементов в которых более или менее известны.
Суммируя все изменения в надродовой классификации конодонтов, предложенные на настоящее время, для конодонтов ордовикского возраста она выглядит следующим образом:

Тип Chordata

Класс Conodonta Pander, 1856
(Класс Conodonta Eichenberg, 1930)

Отряд Westergaardodinida Lindström, 1970

Семейство Westergaardodinidae Muller, 1959
Род Westergaardodina Muller, 1959

Отряд Panderodontida Sweet, 1988

Семейство ?Fryxellodontidae Miller, 1982
Род Fryxellodontus Miller, 1969
Род Pseudooneotodus Drygant, 1972

Incertae familiae

Род Loxodus Furnish, 1938
Род Crisodus Repetski, 1982
Род Coleodus Branson et Mehl, 1933
Род Leptochirognathus Branson et Mehl, 1943
Род Thrinicus Bauer, 1987

Семейство Belodellidae Kilodalevich et Chernich, 1973

Род Scalpellodus Dzik, 1976
Род Walliserodus Serpagli, 1967
Род Belodella Ethington 1959
Род Drepanodistacodus Moskalenko 1977

Семейство Panderodontidae Lindström, 1970

Род Panderodus Ethington, 1959
Род Taquipognathus An, 1885
Род Belodina Ethington, 1959
Род Culumbodina Moskalenko, 1973
Род Pseudobelodina Sweet, 1979

Семейство Cordylodontidae Lindström, 1970

Род Cordyodus Pander, 1856
Род Eoconodontus Miller, 1980
Род Iapetognathus Landing, 1983
Род Cambroistodus Miller, 1980

Incertae Ordinis

Семейство Scolopodontidae Bergström, 1982

Род Scolopus Pander, 1856

Семейство Strachanognathidae Bergström, 1982

Род Cornodus Fahrjeus, 1966
Род Strachanognathus Rhodes, 1955
Род Dapsilodus Cooper, 1976
Род Scabbardella Orchard, 1980
Род Decoriconus Cooper, 1975
Род Besselodus Aldridge, 1982

Отряд Protopanderodontida Sweet, 1988

Семейство Protopanderodontidae Lindström, 1970

Род Semiachontiodus Miller, 1969
Род Drepanodus Pander, 1856
Род Protopanderodus Lindström, 1971
Род Staufferella Sweet, Thompson et Satterfield, 1975

Род Parapanderodus Stouge, 1984
Род Teridontus Miller, 1980
Род Ulrichodina Furnish, 1938
Род Scandodus Lindström, 1955
Род Oneotodus Lindström, 1955
Род Scolopodus Pander, 1856

Семейство ?Clavohamulidae Lindström, 1970

Род Clavohamulus Furnish, 1938
Род Hirsutodontus Miller, 1969
Род Hispidodontus Nicoll et Shergold, 1991
Род Sznzloptognathus Lee, 1970
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Семейство Distacodontidae Bassler, 1925
Род Paltodus Pander, 1856
Род Drepanostodus Lindström, 1971
Род Paroistodus Lindström, 1971

?Подразделение (Отряд) Prioniodontida Dzik, 1976

Род Periodon aculeatus (Hadding, 1913)
Род Microzarkodina parva Lindström, 1971
Род “Plectodina” tenuis (Branson et Mehl, 1933)
Род Plectodina aculeata (Stauffer, 1930) sedis mutabilis

Подотряд Prioniodinina, Sweet, 1988

Подотряд Prioniodinina, Sweet, 1988
Семейство Prioniodontidae Bassler, 1925
Род Paracordylodus gracilis Lindström, 1955
Род Paraprioniodus Ethington et Clark, 1981
Род Acanthocordylodus Moskalenko, 1973
Семейство Acodontidae Dzik, 1994
Род Tripodus Bradshaw, 1969
Род Prioniodus Pander, 1856
Род Oepikodus Lindström, 1955
Род Acodus Pander, 1856
Род Eoneopriodius Mound, 1965
Семейство Balognathidae Hass, 1959
Род Baltoniodus Lindström, 1971
Род Lenodus Sergeeva, 1963
Род Sagittodontina Knupfer, 1967
(= Noixodontina McCracken et Barnes 1982)
Род Rhodesognathus Bergström et Sweet, 1966
Род Amorphognathus Branson et Meh, 1933
Род Eoplacognathus Hamar, 1966
Род Cahabagnathus Bergström, 1983
Род Prioniodus Pander, 1856
Род Promissum Kovacs-Endrody, 1986
Род Polyplacognathus Stauffer, 1935
Род ?Polonodus Dzik, 1976
Семейство Phragmodontidae Bergström, 1982
Род Phragmodus Branson et Meh, 1933
Семейство Pygodontidae Bergström, 1981
Род Pygodus Lamont et Lindström, 1957
Род ?Nericodus Lindström, 1955
Надсемейство Icriodontacea Muller et Muller, 1957
Семейство Pterospalodontidae Cooper, 1977
Род Complexodus Dzik, 1976
Род Distomodus Branson et Branson, 1947

Род Birksfeldia Orchard, 1980
(= Gamachignathus McCracken, Nowlan et Barnes, 1980)
Семейство Icriodontidae Muller et Muller, 1957
Род Icriodella Rhodes, 1953

Отряд Ozarkodinida Dzik, 1976

Подотряд Plectodinina Dzik, 1991
Семейство Oistodontidae Lindström, 1970
Род Histiodella Harris, 1962
Род Oistodus Pander, 1856
Род Utahconus Miller, 1980
Род Rossodus Repetski et Ethington, 1983
Род Protoprioniodus McTavish, 1973
Род Fahraeusodus Stouge et Bagnoli, 1988
Род Juanognathus Serpagli, 1974
Семейство Periodontidae Lindström, 1970
Род Periodon Hadding, 1913
Род Hamarodus Viira, 1974
Надсемейство Chiogognathacea Branson et Mehl, 1944
Семейство Plectodinidae Sweet, 1988
Род Microzarkodina Lindström, 1971
Род Plectodina Stauffer, 1935
Род Aphiognathus Branson, Mehl et Branson, 1951
Род Byantodina Stauffer, 1935
Род Scyphodus Stauffer, 1935
Род Oulodus Branson et Meh, 1933
Семейство ?Chiogognathida Branson et Mehl, 1944
Род Spinodus Dzik, 1976
Род Erraticodon Dzik, 1978
Род Erismodus Branson et Mehl, 1933
Род Chiognathus Branson et Meh, 1933
Род Archaeognathus Cullison, 1938

Icertae familae
Род Bergstroemognathus Serpagli, 1974
Род Appalachignathus Bergström, Carnes, Ethington, Votaw et Wigley, 1974
Род Rueterodus Serpagli, 1974
Род Tasmanognathus Burrett, 1979

Подотряд Ozarkodinina Dzik, 1976
Семейство Spathognathodontidae Hass, 1959
Род Yaoxianognathus An, 1985
Род Ozarkodina Branson et Mehl, 1933
Несмотря на попытки с помощью кладистики установить какие-то общие закономерности в эволюционных последовательностях родов, эта система остается искусственной из-за недостаточного знания о функционировании и расположении отдельных элементов в конодонтовых аппаратах. Гомология отдельных конодонтовых элементов более или менее обоснованно предполагается только для сходных родов, а филогенетическое сходство разных по составу аппаратов основано пока только на гомеоморфии элементов, что вносит значительную неопределенность в филогенетические построения.

В настоящее время при наличии только условной и спорной классификации высших таксонов конодонтов для практического применения при описании таксонов намного удобнее располагать рода в алфавитном порядке, что преимущественно и используется во многих монографических работах.

Системы обозначения конодонтовых элементов. С самого начала изучения конодонтовые элементы подразделялись на морфологические типы согласно их внешнему облику. Так, уже при первом описании конодонтов Х. Пандер (1856) разделил их на простые и сложные элементы. Эти обозначения приведены в более стройную систему в «Третизе» [Clark et al., 1981] и позднее в окончательном виде были представлены В. Свитом [Sweet, 1988] (рис. 66). Эта морфологическая система в настоящее время широко используется, хорошо характеризует общий вид конодонтов и дает возможность специалистам говорить на одном языке при обозначении основных типов конодонтовых элементов.

Параллельно долгое время существовали сходные морфологические обозначения, органично возникшие из формальной номенклатуры и часто характеризующие элементы согласно их формальным родам — оистодиформный, кордиодиформный, дрепанодиформный и т. д. Для ко-

<table>
<thead>
<tr>
<th>Кониформные (coniform)</th>
<th>Геникулятные (geniculate)</th>
<th>Геникулятные (geniculate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рамиформные (ramiform)</td>
<td>Алятные (alate)</td>
<td>Бревиформные (breviform)</td>
</tr>
<tr>
<td>Бипенинатные (bipeninate)</td>
<td>Дигератные (digyrate)</td>
<td>Экстенсиформные (extensiform)</td>
</tr>
<tr>
<td>Долабраторные (dolabrate)</td>
<td>Квадрираматные (quadriramate)</td>
<td></td>
</tr>
<tr>
<td>Квадрираматные (quadriramate)</td>
<td>Мультираматные (multiramate)</td>
<td></td>
</tr>
<tr>
<td>Лекритные (rastrate)</td>
<td>Стеллатные (stellate)</td>
<td>Стеллискатьные (stelliscaphate)</td>
</tr>
<tr>
<td>Пастинатные (pastinate)</td>
<td>Пастиникатные (pastiniplanate)</td>
<td>Пастиникатные (pastiniplanate)</td>
</tr>
<tr>
<td>Карминатные (carminate)</td>
<td>Карминикатные (carminiplanate)</td>
<td>Карминикатные (carminiplanate)</td>
</tr>
<tr>
<td>Ангулятные (angulate)</td>
<td>Ангулискатьные (anguliscaphate)</td>
<td>Ангулискатьные (anguliscaphate)</td>
</tr>
<tr>
<td>Сегминатные (segminate)</td>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
</tr>
<tr>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
</tr>
<tr>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
</tr>
<tr>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
<td>Сегминикатные (segminiplanate)</td>
</tr>
</tbody>
</table>

Рис. 66. Классификация конодонтовых элементов по морфологии, рекомендованная в «Третизе» [Clark et al., 1981; Sweet, 1988]. Практически все морфологические типы элементов встречаются среди ордовикских конодонтов, за исключением форм, отмеченных серым цветом.
Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса

Положение конодонтовых элементов [Purnell et al., 2000]. В настоящее время «PMS» система настолько вошла в практику обозначения отдельных элементов ордовикских конодонтов, что стала применяться и для аппаратов конических типов. При этом не ставится задача отметить гомологичность конических элементов и элементов прионидонтидовых аппаратов, а только отражается условный морфологический тип того или иного конического элемента в аппарате. В данной работе применены именно эти обозначения конодонтов.

Сходная система, предложенная К. Барнсом [Barnes et al., 1979], но с принципиально другими буквенно-обозначениями элементов (рис. 67) используется гораздо реже, преимущественно специалистами из Канады, работающими в контакте с автором этой системы [Ji, Barnes, 1994a]. Буквенные символы К. Барнса были модифицированы для обозначения элементов в аппаратах рода Panderodus [Sansom et al., 1994], которые были классифицированы по их поперечному сечению, степени изогнутости и расположению ребер и выемок. Но какая-либо гомология между элементами Panderodus и обозначенными этими же символами элементами прионидонтидовых аппаратов также не предполагается [Purnell, Donoghue, 1998; Sansom et al., 1994].

<table>
<thead>
<tr>
<th>Авторы системы обозначений</th>
<th>Обозначения элементов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeppsson, 1971</td>
<td>sp oz ne hi hi pl pl tr</td>
</tr>
<tr>
<td>Sweet, Schonlaub, 1975</td>
<td>Pa Pb M Sc Sc Sb Sb Sa</td>
</tr>
<tr>
<td>Sweet in Clark, 1981</td>
<td>Pa Pb M Sc Sb Sd Sd Sa</td>
</tr>
<tr>
<td>Barnes et al., 1979</td>
<td>g f e a b d d c</td>
</tr>
<tr>
<td>Dzik, 1991</td>
<td>sp oz ne hi ke pl lo tr</td>
</tr>
</tbody>
</table>

Рис. 67. Системы буквенных обозначения элементов в аппаратах, наиболее широко используемые для конодонтов ордовика.
Описания конодонтов, представленные в этой работе, за исключением нескольких видов, опубликованы впервые. Описания родов и входящих в них видов приводятся в алфавитном порядке. Коллекция конодонтов хранится в ЦНИГРмузее им. Ф. Н. Чернышева (ВСЕГЕИ, Санкт-Петербург), в Национальном музее г. Кардифф (Великобритания) и частично в отделе стратиграфии и палеонтологии у автора работы.

Род *Acodus* Pander, 1856

1856 *Acodus* Pander, р. 21.
1969 *Triododus* Bradshaw, р. 1164.
1980 *Diaihorodus* Kennedy, р. 51.
1984 *Acodus* Pander, 1856: Stouge, p. 76.
2009 *Acodus* Pander, 1856: Zhen, Nicoll, p. 8, 11.

Типовой вид. *Acodus crassus* Pander, 1856 (=*Acodus erectus* Pander, 1856), Р элемент; Ленинградская область, нижний ордовик, зона *Prioniodus elegans*.

Диагноз. Семиэлементный конический аппарат включает два типа геникулятных или негеникулятных «акодиформных» элементов (Pa и Pb), негеникулятные, несущие киля Sa, Sc, Sb и Sd элементы, и геникулятные M элементы. Для Sd элементов характерно заднебоковое расположение заднего киля, для Sa элементов — наличие трех килей: двух заднебоковых и заднего. Все элементы крупные, альбидного состава, незубчатые.

Замечания. Валидность рода *Acodus* неоднократно подвергалась сомнению [Kennedy, 1980; Sweet, 1988], так как типовой материал из Ленинградской области, где элементы *Acodus* составляют до 10% комплекса, был утерян. В хорошо изученных разрезах Швеции и Норвегии элементы *Acodus* встречаются редко и не переизучались [Rasmussen, 2001]. В Западной Эстонии они были отнесены к роду *Triododus* Bradshaw, 1969 [Viira et al., 2001], типовым элементом которого является *Triododus laevis* Bradshaw из отложений нижней части дапинского яруса свиты Форт Пенья (Тексас, Северная Америка) [Bradshaw, 1969].

Распространение. Виды рода *Acodus* встречаются повсеместно во всех фашиальных типах отложений от верхней части тремадокского до середины дарривильского яруса. В Балтоскандинии, Казахстане, Северном и Южном Китае и Австралии они известны с позднего тремадока. В Северной Америке первые *Acodus* (=*Triododus*) отмечаются только с раннего дапина, тогда как сходные более ранние формы относятся к родам *Tropodus* и *Diaihorodus* [Ji, Barnes, 1994a]. Достоверные находки *Acodus* на Сибирской платформе также относятся к низам среднего ордовика [Dzik, 2010]. В Казахстане виды *Acodus* доминируют в комплексах верхнего тремадока и нижнего фло как в карбонатных, так и кремнистых породах.

Acodus longibasis McTavish, 1973

Табл. 3, фиг. 1–11

2000 *Prioniodus deltatus longibasis* (McTavish): Дубинина, с. 200, табл. XI, фиг. (только) 1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 15, 25, 26, 31–33.

Диагноз. S элементы с высоким основанием и длинными килями-отростками, длина которых может достигать половины высоты элемента. Для M и Р элементов характерен вытянутый задний край основания, а для Р элемента — длинное сильно выступающее ребро на боковой стороне.

Замечания. *Acodus longibasis* был описан из свиты Эмануэль, Западная Австралия как подвид вида *Acodus deltatus*, характеризующийся длинными

Распространение. Помимо кремнистой бурбу- байтальской свиты A. longibasis известен из верхнетрендской части свиты Эмануэль в Западной Австразии [McTavish, 1973], свиты Кечика (Северо-Восточная Британская Колумбия, Канада) [Pyle, Barnes, 2002] и шабактинской свиты разреза Батырбай (горы Малый Каратау, Южный Казахстан) [Дубинина, 2000]. Вероятно, встречается в верхнем тремадоке в Тимано-Печорском регионе, Приполярном и Полярном Урале (Пермский, северный край элемента волнистый. Барабанчатый с закругленной передней стороной и относительно короткими отростками. М элемент геометрически несимметрично расположенными относительно короткими отростками. В результате изучении материала из других регионов.

Местонахождение. Во всех разрезах бурбу- байтальной свиты Юго-Западного Прибалхашья, Южный Казахстан, зона A. longibasis верхней части тремадокского — нижней части флошского ярусов нижнего ордовика.

Материал. 65 элементов.

Acodus cf. A. emanuelensis McTavish, 1973

Табл. 3, фнг. 12–19

2003 Acodus sp. cf. emanuelensis McTavish, 1973: Zhen et al., p. 180, figs. 7A–Y.

Описание. Все элементы крупные с относительно короткими, четко выраженным отростками. Были найдены только P, Sa, Sc, Sd и M элементы. P элементы с невысоким основанием, крупным слегка наклоненным зубцом и удлиненными передним и задним отростками. Внутренняя боковая сторона P элементов гладкая, прямая; внешняя сторона у одного или обоих P элементов несет выпуклый валик. Sa элементы с двумя боковыми отростками передне-бокового положения, которые не заходят за базальный край основания. У уплощенных с боковыми Sc элементов передний и задний отростки также не опускаются за базальный край. Sd элементы с четко выраженным передним, задним и боковыми несимметрично расположенными относительно короткими отростками. М элемент гемикулярный с закрученной передней стороной и относительно коротким задним отростком. Базальный край элемента волнистый.

Замечания. Из-за небольшой численности экземпляров этого вида в коллекции реконструкция его аппарата достаточно проблематична. Так, невозможно уверенно вычленить P элементы Acodus cf. A. emanuelensis A из комплексов с килеватыми P элементами A. longibasis и гладкими P элементами Tropodus austalis, находящимися на разной онтогенетической стадии. В результате сложно утверждать, есть ли хотя бы у одного из его морфотипов P элементов боковой киль или оба P элемента несут только выпуклый валик на внешней боковой стороне. В связи с этим данный представитель рода Acodus может быть определен только условно.

Местонахождение. Во всех разрезах бурбайтальной свиты Юго-Западного Прибалхашья, Южный Казахстан, зона A. longibasis верхней части тремадокского — нижней части флошского ярусов нижнего ордовика.

Материал. 35 элементов.

Acodus sp. A

Табл. 4, фнг. 1–24

Описание. Крупные элементы с относительно невысоким основанием и большим зубцом. Выделяются два типа P элементов, Sc, Sb; два типа Sd, Sa и M элементы. Р элемент характеризуется низким вытянутым задом основанием и наклоненным более чем на 90° широким зубцом. Боковой отросток в виде широкого выпуклого валика в центральной части боковой стороны. Другая сторона элемента гладкая. Базальный края ровный; базальная плоскость неглубокая. Сечение основания элемента треугольное.

У Pb элементов основание короткое, не вытянутое назад и вперед, плавно переходящее в зубец. На одной из боковых сторон наблюдается валик, образующий небольшой выступ на базальном крае основания. Сечение основания щелевидное.

Sc элементы, уплощенные с боков, с передним и задним отростками и гладкими боковыми сторонами. На внутренней боковой стороне элемента, ближе к его переднему краю, на ба-
В северном крае основания присутствует небольшая выемка. Эта черта типична для многих видов данного рода.

Sb элементы сходны с Sc элементами, но на одной или реже на обоих их боковых сторонах присутствует небольшое ребро или валик (табл. 4, фиг. 8, 9, 16). Задний и передний отростки примерно одинакового размера. Базальный край элемента на стороне, несущей основное ребро, имеет небольшую выемку. Менее заметная выемка может присутствовать также и на противоположной стороне элемента.

У Sd элементов развиты задний, передний и два боковых отростка, последние занимают задне-боковое и передне-боковое положение. Кроме основных отростков на боковых сторонах элементов могут присутствовать дополнительные небольшие ребра, не доходящие до края основания. Выделяются два типа Sd элементов, отличающихся друг от друга степенью выраженности переднего отростка (табл. 4, фиг. 14, 18, 20). Sa элементы альпийские с трёх небольшими боковыми отростками и гладкой передней стороной. Боковые отростки не заходят на нижний край основания.

Генеральные M элементы характеризуются низким основанием, сильно наклоненным зубцом и относительно небольшими передним и задним отростками. Базальный край элемента волнистый.

Замечания. Acodus sp. А отличается от многочисленных описанных представителей этого рода характерной формой Рb элементов с очень низким основанием и генеральным Рa элементами. Кроме того, у этого вида выделяются два типа Sd элементов. Описание вида приводится в открытой номенклатуре из-за недостаточности коллекции из кенташской толщи Северной Киргизии.

Местонахождение. Кенташская толща (обр. 9066), западная часть Киргизского хребта, Северная Киргизия, нижняя часть флюскового яруса, нижний ордовик.

Материал. 83 элемента.

Acodus? chingizicus Tolmacheva sp. nov.

Табл. 5, фиг. 1–17

Название вида. От хр. Чингиц, где был найден этот вид.

Голотип. Р элемент, экз. 1/5 (табл. 5, фиг. 1), обр. 225, маматская свита, хр. Чингиц, Восточный Казахстан, верхняя часть тренадокского яруса.

Диагноз. Семи- или восьмилепестный аппарат включает P, Sc, два Sb, два Sd и M элементы с невысоким основанием, относительно коротким зубцом и небольшими отростками. Sd элементы отличаются расположением боковых ребер (отростков) и степенью уплощенности в боковом направлении. Поверхность элементов без орнаментации.

Описание. Выделяются P, Sc, два типа Sb, два типа Sd и M элементы; все элементы крупные, с короткими и толстыми отростками. Базальная полость у всех элементов относительно глубокая, занимает большую часть основания. Р элемент пастинатный, с невысоким основанием, небольшим наклоненным зубцом и с небольшими передним, задним и боковыми отростками, занимающими передне-боковое положение (табл. 5, фиг. 3). Длина бокового отростка равна или превышает длину переднего; верхние стороны отростков несут небольшие кили. Элемент треугольный в поперечном сечении; базальный край основания прямой.

Sc элемент негеникулятный, с треугольным сбоку основанием, длина которого чуть превышает его высоту. Передний и задний край основания и зубца несут кили, боковые стороны гладкие, чуть выпуклые. Элементы уплощены с боков, базальная полость щеleeобразная. Базальный край неровный, его передняя часть чуть загибается вниз.

Выделяются два типа Sb элементов. Sb элементы по морфологии сходны с Sc элементами, за исключением присутствия на одной из боковых сторон небольшого ребра, который ярко выражен на основании и исчезает на зубце. У Sb элементов передняя сторона повернута вовнутрь и занимает передне-боковое положение, а на внешней стороне развиты два отростка: один занимает переднее, другой — задне-боковое положение (табл. 5, фиг. 4–6). Базальный край элементов вогнутый, с опущенными передним и задним краями.

Для Sd1 элементов характерно крестообразное сечение с равными по длине передним, задним и боковыми отростками (табл. 5, фиг. 8). Боковые отростки расположены практически симметрично. Верхние края отростков заострённые, боковые отростки протягиваются в виде вытянутых ребер на зубце. Базальный край элементов вогнутый, с опущенными передним и задним краями. Sd1 элементы (табл. 5, фиг. 9, 12) похожи по общей морфологии на элементы Sd1, но уплощены с боков, а его передний и симметрично расположенные боковые отростки несут кили.

M элемент генеральный со слегка вытянутым в передне-заднем направлении основанием и широким зубцом; угол между зубцом и основанием составляет около 90°. Передний и задний край элемента заострены, верхний край основания об-
разует крылообразный выступ. Базальный край основания волнистый.

Замечания. В относительно небольшой коллекции конодонтов из маматской свиты Восточного Казахстана, вероятно, представлены не все морфологические типы элементов. Остаётся неясным, является ли Sa элемент этого вида симметричным квадрираматным (Sd), или алитные Sa элементы еще не обнаружены, что не позволяет уверенно отнести этот вид к роду Acodus. Кроме того, в состав аппарата рассматриваемого вида входят два типа Sb элементов, что также не характерно для видов вида входит два типа Sb элементов, что также не характерно для вида в."
и Средней Швеции, широкое распространение этого рода в Балтийском ограничивается нижним и средним гранатидным. В Америке, Китае и Австралии виды рода _Ansellia_ образуют самостоятельные филогенетические линии, продолжающиеся вплоть до ашгиллского времени.

В Северной Америке помимо _Ansellia jemtlandica_ выделены _Ansellia nevadensis_ (Ethington et Schumacher, 1969) с зубчатым и ребристым Р элементом, _Ansellia crassa_ Bauer 1994 с гладкими Р элементами и характерной неравномерной зубчатостью S элементов, а также _Ansellia robusta_ (Ethington et Clark, 1982) с ребрами на боковых сторонах Р элементов и грубы, иногда неравномерной зубчатостью у S элементов. На Ньюфаундленде выделен вид _Ansellia sinuosa_ (Stouge, 1984). Несколько видов этого рода, сходные с _Ansellia jemtlandica_, но отличающиеся зубчатостью S элементов, а также разные филогенетические линии, продолжающиеся вплоть до ашгиллского времени.

В Казахстане элементы _R_ элементов с гладкой задней стороной основания и относительно неглубокой базальной полостью, занимающей не более половины высоты элемента. Задняя сторона _S_ элементов с направленными вверх зубчиками, размер которых резко увеличивается от базального края основания к зубцу.

Замечания. В первом описании вида какой признак, как увеличение размеров зубчиков в верхней части основания, не отмечался [Zhang, 1998], однако на изображениях как типового материала, так и материалов из других местонахождений этот признак наблюдается. Увеличение размеров зубцов в верхней части основания присутствует также у всех типов _S_ элементов из Казахстана и Ньюфаундленда [Stouge, 2012], в связи с чем этот признак добавлен в диагноз вида. Зубцы у большинства элементов _Ansellia longicuspica_ из Казахстана обломаны, из-за чего на массовом материале не удается проследить изменчивость соотношения высоты основания и длины зубца. _M_ элементы этого вида в бурабайтальской свите не обнаружены.

Местонахождение. Бурабайтальская свита, разрез Памятник природы – 9706 (от 23 до 32 м разреза), Юго-Западное Прибалхашье, Южный Казахстан, нижняя часть дарривильского яруса, зона _Paroistodus horridus_.

Материал. 27 элементов.

Ansellia jemtlandica (Löfgren, 1978)

Табл. 15, фиг. 8–10, 12–19

1978 _Belodella jemtlandica_ Löfgren, p. 46, pl. 15, fig. 1–8, fig. 24A–D.

2004a _Ansellia jemtlandica_ (Löfgren): Zhen, Percival, p. 84–86, fig. 5A–Q (включая синонимику).

2004b _Belodella jemtlandica_ (Löfgren): Zhen, Percival, fig. 4A–G.

2009b _Ansellia jemtlandica_ (Löfgren): Zhen et al., p. 29–31, fig. 2A–I.

Диагноз. _R_ элементы с гладкой задней стороной основания и относительно неглубокой базальной полостью, занимающей не более половины высоты элемента. Все _S_ элементы зубчатые, зубчики относительно небольшие и ровные, плотно расположенные.
Замечания. Для элементов *Ansella jemtlandica* характерна высокая изменчивость. Среди наиболее изменчивых признаков — размер и характер зубчатости, высота зубца по отношению к высоте основания, а также форма самого зубчатого края у S-элементов. Выделение из *Ansella jemtlandica* s.l. видов *A. longicuspus* и *A. fenxiangensis* несколько ограничило морфологический спектр признаков *Ansella jemtlandica* в современном понимании.

Местонахождение. Найден в нижней части дарривильского яруса каркасной свиты (обр. 2033) Карааканска увала в Северной Бетпак-Далее, найманской свите (обр. N-05/1) хр. Чингиз, Восточный Казахстан. Единичные элементы встречены у верхней части дарривильского яруса караканской свиты (обр. 156) Чу-Илийских гор, Южный Тянь-Шань, нижняя часть дарривильского яруса.

Материал. 56 экземпляров.

Ansella robusta (Ethington et Clark, 1982)

Табл. 15, фиг. 20–24

? 1984 Ansella sinuosa Stouge, p. 60, pl. 7, figs. 5–14.

1987 Belodella robusta Ethington et Clark: Bauer, p. 12, pl. 1, figs. 1, 5, 8, text-fig. 5C.

Диагноз. S-элементы характеризуются крупными, расставленными и неравными по размеру зубчиками на задней стороне основания; Р-элементы — незубчатым задним краем и продольными ребрами в центральной части на каждой из боковых сторон. У М-элементов волнистый базальный край основания.

Замечания. Единичные Sb-элементы из нашей коллекции отличаются от типичных элементов *Ansella robusta* более коротким основанием и длинным зубцом и, возможно, являются деформированными элементами *Baltoniodus*. Они отнесены к *A. robusta* условно.

S-элементы *Ansella robusta* отличаются от элементов *A. sinuosa*, описанного из нижнедарривильских отложений Западного Ньюфаундленда [Stouge, 1984], укрупненной зубчатостью и более прямым задним краем S-элементов. Дальнейшая ревизия этих видов, возможно, покажет, что *Ansella sinuosa* является младшим синонимом *Ansella robusta*.

Местонахождение. Кентайская толща (обр. Д-9041), западная часть Киргизского хребта, Северный Тянь-Шань, нижняя часть дарривильского яруса.

Материал. 2 Sa, 1 Sc, 1 M и 2 P-элемента.

Род Appalachignathus Bergström, Carnes, Ethington, Votaw et Wigley, 1974

Типовой вид. *A. delicatulus*. Bergström, Carnes, Ethington, Votaw and Wigley, 1974; Северная Америка, верхняя часть дарривильского яруса — нижняя часть сандбийского яруса.

Диагноз. В аппарат входит пять типов элементов: карминатные удлиненные Па и Рb-элементы, алятные Sa и модифицированные бипеннатные Sb и Sd-элементы. Все элементы несут плотно расположенные зубчики на переднем или боковых отростках. Базальная полость узкая, неглубокая.

Appalachignathus sp.

Табл. 17, фиг. 1–6

Замечания. В Казахстане немногочисленные, хорошо сохранившиеся Pb и S-элементы рода *Appalachignathus* были найдены в найманской...
свите хр. Чингиз. В узунбулакской свите были обнаружены только фрагменты элементов. Обнаруженные Rb элементы (табл. 17, фиг. 1—4) отличаются от соответствующих форм единственно отнесенного к этому роду вида A. delicatus отсутствием заднего выроста основания под главным зубцом. У элементов из Казахстана задний край зубца и основания элемента заостренный и ровный, образует с нижним краем основания тупой угол, не превышающий 110–120°. Высота элемента от зубка к передней диастальной части не изменяется. Базальный край прямой, щелевидный, не расширяется под главным зубцом. У Sa и Sb элементов зубчики на боковых отростках с острыми краями и треугольное сечение зубца [Kuhn, Barnes, 2005]. Крыловидные отростки с острыми краями и треугольное сечение зубца имеют на узунбулакской образной стороны элементов. Поверхность всех элементов гладкая, базальная полость узкая и неглубокая. Элементы крупные, с гиалиновым основанием и альбидными дистальными частями зубца.

Описание. Симметричные и немного асимметричные элементы с широкими боковыми крылообразными отростками наиболее крупные из всей транзитной серии. На задней и передней стороне этих элементов расположен центральный высокий валик, проходящий от самого окончания зубца до базального края основания. Края основания так как по передней, так и задней стороне элемента также ограничены четкими валиками. Центральный валик на базальном крае задней стороны элемента образует характерный петлеобразный выступ, который также присутствует и у более узких несимметричных элементов. У последних центральный валик на передней стороне элемента выражен значительно слабее.

Боковые отростки у уплощенных элементов занимают передне-заднее положение, зубец загнут к наружной стороне элемента, а задний более четкий валик смещен вовнутрь. Ближе к основанию валик становится незаметным; также уменьшается высота базальных валиков.

Распространение. В Северном Китае (свита Маягоу (Majiagou)), Малайзии и Таиланде Aurilobodus leptosomatus встречен в нижней части дарривильского яруса [An et al., 1983; Agematsu et al., 2008]. На Ньюфаундленде этот вид в относительно большом количестве найден в пределах нижнедарривильских зон Histiodella tableheadensis и Histiodella kristina [Stouge, 1984]. В Австралии распространение вида охватывает большой стратиграфический интервал от верхнего фло (свита Coolibah, Центральная Австралия) [Stait, Druce, 1993] через нижнюю и среднюю части дарривильского яруса (свита Goldwyer, Canning Basin, Западная Австралия) [Watson, 1988] до верхнего сандбия — нижнего ката (свита Митака (Mithaka)) [Kuhn, Barnes, 2005].

Местонахождение. Узунбулакская свита (обр. 156), Чу-Илийские горы, Южный Казахстан, нижняя часть дарривильского яруса.

Материал. 10 элементов.

Род Chiganodus Tolmacheva gen. nov.

Название рода. От пос. Чиганак, рядом с которым в разрезе Памятник природы были впервые найдены природные группировки этого таксона.

Типовой вид. Chiganodus parilis Tolmacheva sp. nov., бурубайтальская свита, Юго-Западное Прибалхашье, Южный Казахстан, верхняя часть тремадокского — нижняя часть флюсового яруса нижнего ордовика.

Диагноз. Аппарат этого рода состоит из трех морфотипов элементов: геникулятных (оистодиформных) M элементов, негеникулятных (скульфонеаформных — P?) и ряда геникулятных (оистодиформных) S элементов, отличающихся разной длиной заднего и переднего краев основания.

Замечания. По набору элементов в аппарате род Chiganodus сходен с представителями родов Drepanoistodus, Paroistodus и Oelandodus, аппараты которых включают простые конические формы. Однако у родов Drepanoistodus и Paroistodus количество негеникулятных (дрепанодиформных) элементов существенно превышает количество геникулятных (оистодиформных) элементов, в связи с чем первые рассматриваются как S, а вторые как M элементы. В то же время в аппаратах Oelandodus, которые отличаются наличием только геникулятных оистодиформных элементов, роль S элементов играют, по всей вероятности, именно эти элементы. Аппарат рода Chiganodus является промежуточным, так как S и M элементами в нем, возможно, служили геникулятные формы, а роль P элементов выполнили негеникулятные. Состав рода подтверждается находками природных группировок элементов в кремнях бурубайтальской свиты (рис. 68).

Распространение. Находки элементов рода известны только в Казахстане. Возможно, они были обнаружены в Арктической Канаде в нижней части флюсового яруса.

Chiganodus parilis Tolmacheva sp. nov.

Табл. 9, фиг. 7—11, 14—16
? 2002 Oistodus elongatus van Wamel: Pyle, Barnes, p. 105, pl. 11, fig. ?20, 22 (только)

Название вида. От лат. parilis — одинаковый, идентичный.

Диагноз. Небольшие элементы, сильно уплощенные с боков, с неглубокой щелевидной базальной полостью. Выделяются геникулятные элементы с вытянутым задним краем основания, геникулятные с коротким основанием и негеникулятные дрепанодиформные элементы. На обеих боковых сторонах всех типов элементов присутствует крупное и ярко выраженное срединное ребро, не доходящее до края основания.
Описание. Все элементы Chiganodus iarilis очень небольшие и уплощенные с боков с неглубокой щелево-образной базальной полостью. Обе стороны всех типов элементов несут по одному центральному ребру, которое немного заходит на основание, но не доходит до него края. Оба боковых ребра идентичны по степени выраженности и размеру, их центральная часть выступает в стороны и назад в виде небольшой крыльообразной складки.

Негеникулятные (P?) элементы имеют скульптонармный облик с относительно коротким зубцом и низким, немного вытянутым назад основанием. Передняя сторона элемента округлена или чуть вытянута вперед, передний край основания слегка загнут на внутреннюю сторону.

Для геникулятных (S) элементов характерен относительно небольшой наклоненный зубец и длинное вытянутое назад основание (рис. 69). Угол между верхним краем основания и задней стороной зубца 50–65°. Зубец имеет характерное волнобразное расширение заднего края ближе к основанию элемента. Передний край основания закруглен, немного вытянут вперед у элементов с утолщенным задним краем. Задний край основания может быть коротким или длинным с по- степенными переходами (фиксированные длины не наблюдаются), но одинаковой высоты вплоть до закругленного заднего окончания, дугообразно загнут вниз. Нижний край элемента слегка вогнут от центра элемента к окончанию заднего края основания. Боковые ребра заканчиваются сразу за верхним краем основания. Боковые стороны основания гладкие.

У геникулятных (M?) элементов, которые по облику сходны с геникулятными (S?) элементами, угол между верхним краем основания и задней стороной зубца небольшой и не превышает 30°.

Сравнение. Элементы Chiganodus iarilis по общей морфологии сходны с элементами Oistodus elongatus и могут быть с ними перепутаны, особенно при изучении конодонтов непосредственно в кремнистой породе. Основным отличительным признаком Chiganodus iarilis является присутствие ребер на обеих боковых сторонах, а не на одной. Негеникулятные элементы Chiganodus parilis отличаются от также похожих дрепанодимформных S элементов Drpanoistodus costatus (Abaimova, 1971) меньшими размерами, значительным уплощением с боковых сторон и наличием только одного ребра с каждой из боковых сторон. От элементов Paroiostodus parallelus (Pander, 1856) — меньшими размерами и более короткими ребрами, которые у последнего вида проходят почти до нижнего края основания. Однako в целом элементы Chiganodus parilis имеют достаточно характерный облик, позволяющий их распознать даже в кремнистых породах на поверхности напластования.

Замечания. Элементы Chiganodus parilis в кренистой отложении Казахстана встречаются в изобилии в узком стратиграфическом интервале нижней части зоны Acodus longibasis верхней части трендского и нижней части флюскового ярусов. Так как этот вид многочислен в глубоководных кренистых осадках он, вероятно, может быть обнаружен и в разрезах глубоководных ярусов. Так как этот вид многочислен в глубоководных кренистых осадках он, вероятно, может быть обнаружен и в разрезах глубоководных ярусов. Тем более, что по загнутому внутрь переднему краю, предположительно, изображена именно внутренняя часть элемента, несущая резко выраженный резрер, что характерно для этого вида.

Геникулятные S? элементы встречаются в отложениях чаще, чем другие типы элементов этого вида. Возможно, что аналогично аппаратам рода Oelandodus здесь роль S элементов выполняли именно они, а в качестве M и P могут рассматриваться значительно более редко встречающиеся oistodiformные элементы с наклоненным зубцом и скульптонармные элементы.

Местонахождение. Во всех разрезах бурабай-тальской свиты, зона A. longibasis.

Материал. 45 выделенных элементов, 15 группировок в кремнях.

Род Colaptoconus Kennedy, 1994
1980 Glyptoconus Kennedy, р. 61.
1994 Colaptoconus Kennedy, р.

Типовой вид. Scolopodus quadruplicatus Branson et Mehl, 1933; Центральная Америка, нижний ордовик.

Диагноз. Аппарат включает конические элементы в основном гиалинового состава, несущие внешнюю складку в виде ребер или выемок. Выделяются три типа асимметричных элементов: с округленным сечением склоподимформные и ребристые, переходные с тремя репрами и дрепанодимформные уплощенные, и два типа симме-
тричных — выпрямленные ульриходиниформные и стауффериформные. В последней ревизии род *Colaptoconus* рассматривается как младший синоним рода *Ulrichodina* Furnish, 1938 (Landing et al., 2003).

Распространение. Встречается практически повсеместно в трекадском ярусе.

Colaptoconus? sp. 1

Табл. 2, фиг. 1–21

Описание. Конодонты конические альбидного состава с относительно невысоким основанием и длинным зубцом; несут различной степени выраженной ребра. Ребра не доходят до базального края основания, поперечное сечение последнего всегда округленное. Выделяются серия асимметричных S и симметричных Sa элементы. Симметричные элементы характеризуются округленной передней стороной, двумя задне-боковыми резкими ребрами и задним центральным ребром. Зубец у симметричных элементов резко загнут назад, составляя с задней стороной основания около 100–110°. Асимметричные элементы образуют серию от дрепанодиформных уплощенных до скандодиформных, зубец которых развернут на 30° по отношению к основанию. Количество ребер и степень их выраженной не закономерна, одного типа элементы могут нести как тонкие, небольшие ребра, так и резкие, а могут быть почти гладкими. В том числе ребро может присутствовать или отсутствовать на передней стороне элемента.

Замечания. Элементы *Colaptoconus? sp.* составляют 80% от всего количества элементов в комплексе и являются самыми крупными представителями этой ассоциации. Они условно отнесены к роду *Colaptoconus*, учитывая их альбидный состав и развитые ребра, а не выемки. Наличие стауффериформного симметричного Sa элемента противоречит отнесению данного вида к роду *Ulrichodina*. По всей вероятности, элементы из агалатасской свиты представляют собой новый вид, однако его полное описание представляется преждевременным из-за недостаточности фактического материала.

Местонахождение. Агалатасская свита (обр. 556, 556а) гор Кендыктас, Южный Казахстан.

Материал. 94 элемента.

Род *Cornuodus* Fähraeus, 1966

Диагноз. Простые конические конодонты с округлым сечением основания с гладкими, только частично орнаментированными сторонами.

Распространение. Распространение этого монотипического рода соответствует распространению вида *C. longibasis*.

Cornuodus longibasis (Lindström, 1955)

Табл. 7, фиг. 22, 23

1955 *Drepanodus longibasis* Lindström, p. 564, pl. 3, fig. 31.
1966 *Cornuodus erectus* Fähraeus, p. 20, pl. II, fig. 8a–b, text-fig. 2: b.
1967 *Cornuodus bergstroemi* Serpagli, p. 57. pl. 12, figs. 1a–2c.
1988 *Cornuodus longibasis* (Lindström): Stouge, Bagnoli, p. 114, pl. 1 fig. 20–21.
2009в *Cornuodus longibasis* (Lindström): Zhen et al., p. 267, 272–273, fig. 4°–L.

Диагноз. Конические элементы с уплощенным зубцом, с относительно высоким и округлым в поперечном сечении основанием и тонкими стенками базальной полости. Поверхность элементов с микроорнаментацией в виде тонкой полосчатости, проявленной в большей степени на задней стороне элементов. Аппарат вида включает семь морфотипов элементов [Löfgren, 1999].

Замечания. Попытки выделения других видов внутри рода *Cornuodus*, элементы которого отличаются простой морфологией, возможны только на основе анализа большого статистического материала. Однако в большинстве коллекций элементы этого вида относительно немногочисленны [Zhen et al., 2009в]. В связи с этим элементы *Cornuodus*, слегка отличные по своей морфологии от *Cornuodus longibasis*, в настоящее время рассматриваются лишь как морфозоотипы [Löfgren, 1999]. Отмечается, что *Cornuodus longibasis* с относительно невысоким (= широким) основанием характерен для среднего ордовика, тогда как в низах ордовика и в верхней части верхнего ордовика отмечается более вытянутые формы [Löfgren, 1999].

Местонахождение. Единичные экземпляры встречены в разрезе Баритовый карьер (с 28 по 60 м) бурубайтальской свиты, Юго-Западное Прибалхашье, в найманской свите (обр. N-05/1) хр. Чингиз, Восточный Казахстан, в узунбулакской свите (обр. 156) Чу-Илийских гор, Южный хр. Чингиз, Восточный Казахстан, в узунбулакской толще (обр. D-9066) западной части Киргизского хребта, Северная Киргизия.

Материал. 12 экземпляров.

Род *Costiconus* Rasmussen, 2001

Диагноз. Аппарат включает три морфологических типа элементов: негеникулятный дрепаноидный Р, геникулятный или негеникулятный М и серию S элементов с ребрами на одной или обеих боковых сторонах. Для негеникулятных Р элементов характерны относительно высокое основание и гладкие боковые стороны. М элементы негеникулятные, с относительно высоким основанием. Угол между задней стороной зубца и задней стороной основания составляет более 90°.

Замечания. Элементы *Costiconus ethingtoni* из кремнистых отложений бурубайтальской свиты Казахстана полностью соответствуют описанию материала из Норвегии.

Распространение. Встречается в Балтоскандинии (Норвегия, Польша) в дапинском и нижней части дарривильского яруса [Rasmussen, 2001]. В Северной Америке и Канаде его находки отмечаются во флюсовом и дарривильском ярусах [Ethington, Clark, 1982; Stouge, 1984]. В Казахстане встречен только в кремнистых отложениях флюсового яруса в пределах зоны *Oepikodus evae*.

Местонахождение. В разрезе Раковая горка (обр. Р-10069) и Баритовый карьер (28и и 30 м) бурубайтальской свиты, Юго-Западное Прибалхашье, флюсовый ярус нижнего ордовика.

Материал. 13 экземпляров.

Costiconus ethingtoni (Fåhraeus, 1966)

Табл. 17, фиг. 7, 8, 12, 13, 14–17

1966 *Panderodus ethingtoni* Fåhraeus, p. 26, pl. 3, fig. 5а–б.

2001 *Costiconus ethingtoni* (Fåhraeus): Rasmussen, p. 62–64, pl. 3, figs. 16–18 (включая синонимику).

2009а *Costiconus ethingtoni* (Fåhraeus): Zhen et al., p. 139–141, fig. 3A–W.

2009б *Costiconus ethingtoni* (Fåhraeus): Zhen et al., p. 31–33, fig. 4H–W.

2011 *Costiconus ethingtoni* (Fåhraeus): Zhen et al., p. 221, figs. 6–7.

Диагноз. Негеникулятные S элементы несут меридиональные ребра на одной или обеих боковых сторонах. Для негеникулятных Р элементов характерно относительно высокое основание и гладкие боковые стороны. М элементы негеникулятные, с относительно высоким основанием. Угол между задней стороной зубца и задней стороной основания составляет менее 90°.

Замечания. Элементы *Costiconus ethingtoni* из Казахстана соответствуют описанию материала из Балтоскандинии и других регионов, где были в числе прочих S элементов отмечены формы, несущие до четырех ребер на одной из боковых сторон. Pb элементы с низким и вытянутым зад
Распространение. *C. ethingtoni* — это вид широкого географического распространения, встречается в относительно холодноводных отложениях Южного Китая, Тарима, Новой Зеландии, Балтоскандинии, Канады, Ньюфаундленда, Прекордильерской Аргентины. В Южном Китайе первые находки *C. ethingtoni* появляются в зоне *Lenodus antivarabilis* [Zhang, 1998]. В разрезах Норвегии *C. ethingtoni* встречается в пределах дарривильского яруса от зоны *P. graeai* по зону *E. suecicus* [Rasmussen, 2001]. В Южном Китае, Новой Зеландии и Тариме встречается с нижней части дарривильского пояса от зоны кенташской толщи (обр. 9066), западная часть Киргизского хребта, Северная Киргизия; нижняя часть флоского яруса, нижний ордовик.

Описание. Элементы *Cruxodus tretiakovi* круглые, пирамидальные, с развитыми боковыми и задними зубчатыми килиями. Верхушки всех типов элементов не завершены острием, как у большинства конодонтов, а уплощены и орнаментированы незакономерно расположенными бугорками разной величины. Базальные полости неглубокие, составляют не более 1/10 длины элементов. Зубец не выражен, элементы постепенно сужаются к плоской вершине.

Род *Cruxodus* Tolmacheva gen. nov.

Название рода. От лат. *crux* (крест), по крестообразной верхушке Р элементов.

Типовой вид. *Cruxodus tretiakovi* Tolmacheva sp. nov., кенташская толща, западная часть Киргизского хребта, Северная Киргизия, нижняя часть флоского яруса.

Диагноз. В аппарате *Cruxodus* выделяются три типа элементов. Конические тертипедатные Р элементы и серия конических квадрираматных S элементов, отличающихся степенью асимметрии расположения зубчатых гребней. Верхушки всех элементов тупые с бугорчатой поверхностью.

Сравнение. Сходный состав аппарата с тертипедатными P, а также тертипедатными и квадрираматными S элементами, несущими зубчатые псевдокили, характерен для рода *Lundodus*. Однако у последнего рода Р элементы принципиально отличаются от S элементов отсутствием килий или ребер. Элементы *Cruxodus* внешне не похожи на Sd и Sb элементы вида *Tropodus sweeti*, который отличается от описываемого рода другим составом аппарата и включением в него геникулятных P элементов. Род *Cruxodus* установлен на небольшом материале, в связи с чем некоторые элементы аппарата могли быть не обнаружены.

Распространение. Находки рода известны только в Казахстане.

Cruxodus tretiakovi Tolmacheva sp. nov.

Табл. 7, фиг. 1–13, 17

Название вида. В честь А. А. Третьякова, активно способствующего работам по изучению конодонтов Казахстана и Северной Киргизии.

Голотип. Р элемент (табл. 7, фиг. 10, 11), экз. № 10/7, кенташская толща (обр. 9066), западная часть Киргизского хребта, Северная Киргизия; нижняя часть флоского яруса, нижний ордовик.

Описание. Элементы *Cruxodus tretiakovi* круглые, пирамидальные, с развитыми боковыми и задними зубчатыми килиями. Верхушки всех типов элементов не завершены острием, как у большинства конодонтов, а уплощены и орнаментированы незакономерно расположенными бугорками разной величины. Базальные полости неглубокие, составляют не более 1/10 длины элементов. Зубец не выражен, элементы постепенно сужаются к плоской вершине.

P элементы тертипедатные с килем на задней стороне, гладкой и округленной передней стороной и двумя развитыми круглыми переднебоковыми килиями с разной степенью повернутыми назад (табл. 7, фиг. 8–13, 17). Задний и боковые кили несут расставленные крупные, но невысокие зубчики (псевдозубчики). Нижняя часть заднего киля гладкая. Боковые кили изменчивы — у разных экземпляров они имеют различный размер, но все наиболее широкие в центральной части элементов и уменьшаются к нижнему краю основания. Верхушка плоская и срезанная в виде креста, образованного задним и переднебоковыми килиями.

S элементы квадрираматные, с выраженным задним и меридиональными боковыми килиями, расположенными в центральной части каждой из боковых сторон. Передняя сторона сужена в виде заостренного валика. Для заднего и боковых килий характерна мелкая неравномерная и ино-гда нечетко проявленная зубчатость. Задний и боковые кили несут расставленные крупные, но невысокие зубчики (псевдозубчики). Нижняя часть заднего киля гладкая. Боковые кили изменчивы — у разных экземпляров они имеют различный размер, но все наиболее широкие в центральной части элементов и уменьшаются к нижнему краю основания. Верхушка плоская и срезанная в виде креста, образованного задним и переднебоковыми килиями.

Голотип. Р элемент (табл. 7, фиг. 10, 11), экз. № 10/7, кенташская толща (обр. 9066), западная часть Киргизского хребта, Северная Киргизия; нижняя часть флоского яруса, нижний ордовик.

Местонахождение. Кенташская толща (обр. 9066), западная часть Киргизского хребта, Северная Киргизия; нижняя часть флоского яруса, нижний ордовик.

Материал. 23 элемента.
Род *Decoriconus* Cooper, 1975
1975 *Decoriconus* Cooper, p.

Диагноз. Шестиэлементный аппарат состоит из маленьких ребристых конических элементов с невысоким, округленным в поперечном сечении основанием, мелкой базальной полостью и углубленным зубцом. Элементы характеризуются узкой продольной выемкой по обеим сторонам заднего кия.

Распространение. Распространение этого монотипического рода соответствует распространению вида *Decoriconus peselephantus* s.l.

Decoriconus peselephantus (Lindström, 1955) s.l.

Табл. 17, фиг. 18–24
1955 *Scolopodus? peselephantus* Lindström, p. 595, pl. 2, figs. 19, 20, text-fig. 3Q.
1998 *Decoriconus peselephantus* (Lindström): Löfgren, p. 342–344, figs. 2 m–r, 3k, p, r, 4a–g, o, p (полная синонимика).

Замечания. *Decoriconus peselephantus* s.l. является одним из самых распространенных таксонов ордовикских конодонтов. Очень небольшие по размеру элементы *Decoriconus* редко встречаются в больших количествах, но легко распознаются в любых коллекциях.

Местонахождение. Встречен в массовом количестве в верхней части тремадокского яруса разреза Памятник природы — 89101 (с 26 по 27,72 м), редкие экземпляры обнаружены в флоском — даюпском ярусе разреза Баритовый карьер (с 22 по 24 м, 28 по 49 м) бурубайтальской свиты. Бурудайская свита Юго-Западного Прибалхашья. Обнаружен в кремнистой ирдырской (от обр. 10 до обр. 120) и ишкеольской (обр. 96) свитах Северного Казахстана. Единичные элементы найдены в нижнем дарривильском ярусе в найманской свите в обр. (обр. N-05/1) хр. Чингиз, Восточный Казахстан, и узунбулакской свите (обр. 156) Чу-Иlijских гор, Южный Казахстан, а также в флосковой кенташской толще (обр. Д-9066) западной части Киргизского хребта (Северная Киргизия).

Материал. 250 экземпляров.

Род *Erraticodon* Dzik, 1978
1978 *Erraticodon* Dzik, p. 64–66.

Типовой вид. *Erraticodon alternans* (Hadding, 1913) (= *Erraticodon balticus* Dzik, 1978); разрез Фагельсönг; Швеция, верхняя часть дарривильского яруса.

Диагноз. Восьмиэлементный или семиэлементный аппарат рода состоит, как правило, из крупных сегментовых элементов гиалинового состава с длинными, широко расставленными зубчиками и мелкой базальной поверхностью.

Два вида рода *Erraticodon* — *E. patu* Cooper, 1981 и *E. bellevuensis* Zhen et Percival — характеризуются...
с большим количеством зубчиков на боковых стержнях.

Распространение. Стратиграфическое распространение типового вида, который был описан из Швеции и переописан из валунного материала Польши, в Балтоскандине ограничивается ласнамягийским и ухакуским горизонтами дарривильского яруса. Определение *E. alternans* в других регионах сильно зависит от точки зрения исследователей на его морфологические признаки, но тем не менее он относится к видам широкого географического распространения и встречается практически повсеместно, с нижнего (зона зайсене) через ар-дам широкого географического распространения до верхнего дарривильского яруса. Определение *E. alternans* в рассматриваемых регионах базируется на его морфологических характеристиках, а также на близкой географической proximidad по сравнению с другими таксонами, которые он отличается от них по ряду признаков.

Остальные виды рода имеют более ограниченное распространение, и они встречаются в Аргентине и Южном Китае, в Китайской республике, Корее и, возможно, в Казахстане и Арmenии, где они определяются как *Erraticodon hexianensis* или *Erraticodon ct. hexianensis*.

Описание. *Erraticodon hexianensis* – один из наиболее молодых видов из всех представителей рода

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>An et Ding</td>
<td>China</td>
<td>Единичные экземпляры найдены в нижнем дарривильского яруса Казахстана.</td>
</tr>
<tr>
<td>2007</td>
<td>Zhen et al.</td>
<td>China</td>
<td>Находки в виде ордовикской фауны сходна с описанной в Восточной Гондване, обнаруженные формы условно отнесены к E. hexianensis.</td>
</tr>
</tbody>
</table>

Описание. Относительно крупные гиолиновые элементы с гладкой поверхностью и длинными зубчатыми стержнями. Зубчики тонкие, свободные, нешироко расставленные. Длина основного зубца превышает длину зубчиков примерно в два раза. В коллекции присутствуют только *Pa*, *Sa*, *Sc*, *Sb*, *Sd* и *M* элементы.

Размеры дигератный с двумя зубчатыми отростками. На одном из стержней один или два серединных зубчика увеличены и по размеру соответствуют основным зубцам. Альтанный симметричный *Sa* элемент характеризуется задним зубчатым и двумя боковыми короткими отростками, несущими по одному крупному зубчику. Зубочки на заднем отростке более или менее одинаковые. У бипеннатных *Sb* и *Sc* элементов отличительной особенностью является зубчатый передний и задний отросток, при этом передний отросток *Sb* элемента резко изгибается на внутреннюю сторону элемента в виде бокового отростка. У *Sb* элемента на заднем стержне выделяется увеличенный по сравнению с другими зубчик. Для тертиопедатных *Sd* элементов характерен длинный зубчатый задний и два боковых зубчатых отростка. Все зубчики на заднем стержне примерно одного и того же размера. Для долаборального *M* элемента характерен зубчатый, относительно короткий задний отросток и гладкий, слабо удлиненный передний край.

Замечания. Элементы *Erraticodon* из изученных местонахождений Казахстана встречаются исключительно редко; полный состав элементов аппарата этого семизлементного (восьмизлементного?) таксона не известен. Не обнаружены *Pb* и *Pc* элементы в интерпретации элементов аппарата согласно последней ревизии вида *E. hexianensis*.

Все найденные элементы практически идентичны по морфологии соответствующим элементам *E. hexianensis* An et Ding, 1985. Они также не отличаются от вида *Erraticodon gratus* [Moskalenko, 1977], известного на Сибирской платформе, и *Erraticodon* n. sp. Г, описанного в западном Балтоскандине [Stouge, 2012]. Однако имея во внимание, что во многом казахстанская фауна сходна с описанной в Восточной Гондване, обнаруженные формы условно отнесены к *E. hexianensis*.

Распространение. Встречается во всех фациях, как в кремнистых, так и карбонатных разрезах нижней части дарривильского яруса Казахстана, Южного Китая, Кореи, возможно, Аргентины [Zhen et al., 2007; Hereida et al., 2013].

Местонахождение. Единичные экземпляры найдены в нижнем дарривильского разреза Памятник природы бурубайтальской свиты (обр. 32 м), в найманской свите (обр. N-05/1) хр. Чингиз, в районы Новочеремушкинское и переописан из валунного материала Польши, в Балтоскандине ограничивается ласнамягийским и ухакуским горизонтами дарривильского яруса.

Материал. 1 *M* элемент, 3 *Sc*, 4 *Sb* и 2 *Sd* элементы.
Род *Fahraeusodus* Stouge et Bagnoli, 1988

Типовой вид. *?Microzarkodina adentata* McTavish, 1973; свита Эмануэль (Emanuel), Западная Австралия, верхняя часть третий покоя яруса.

Замечания. Типовым видом рода *Fahraeusodus*, который был выделен при изучении конодонтов нижнего ордовика Ньюфаундленда [Stouge, Bagnoli, 1988], является вид *?Microzarkodina adentata*, описанный в верхнем трёхметровом Австралии [McTavish, 1973]. В аппарат этого вида при его первичном описании, наряду с P, Sc, Sa и M элементами, был включён и Sd (тетрасоматальный, квадрираматный) элемент. Позднее присутствие Sd элемента в аппарате *Fahraeusodus adentata* было подтверждено новыми данными по конодонтам из типового для этого таксона свиты Эмануэль [Zhen, Nicoll, 2009]. Помимо наличия квадрираматных элементов, отличительными признаками *?Microzarkodina adentata* являются отсутствие базальной каймы во всех типов элементов и интервал существования этого вида в пределах позднего третий покоя — раннего фло.

В состав рода *Fahraeusodus* помимо типового вида были включены два вида, первоначально обнаруженные в Северной Америке: *F. marathonicus* (Bradshaw, 1969) и *F. mirus* (Stouge et Bagnoli, 1988). Последний вид был зафиксирован только в разрезах нижнего ордовика Ньюфаундленда [Stouge, Bagnoli, 1988; Pohler, 1994], тогда как *F. marathonicus* оказался видом широкого географического распространения и был найден в Аргентине, Норвегии, на Северо-Американской платформе, а также в Балтоскандине (Ленинградская область) и в кремнях среднего ордовика Казахстана.

Большинство коллекций этого вида ограничено небольшим количеством экземпляров, в которых часть элементов аппаратов может отсутствовать. Однако даже в больших коллекциях *Fahraeusodus marathonicus* квадрираматные элемен ты с двумя боковыми и передним отростками не были обнаружены [Ethington, Clark, 1982; Smith, 1991]. Хотя некоторые авторы предположительно включали в *F. marathonicus* квадрираматные Sd элементы [Repetski, 1982; Pohler, 1994], изображённые ими формы не несут таких характерных признаков этого вида, как ребра на зубочках и базальная кайма, и могут являться элементами других таксонов.

В материале из Казахстана квадрираматные элементы также отсутствуют. Не исключено, что морфологическим аналогом Sd элементов может явиться выраженный (с сильно загнутым в боковую сторону передним отростком) терцио-педатный элемент, который включается в транзитную серию наравне с невыраженными терцио-педатными (Sb), долаборатными (Sc) и алятными (Sa) элементами. Такая интерпретация аппарата была предложена для транзитной серии элементов *Baltoniodus*? sp. из раннего дарривилия Новой Зеландии [Zhen et al., 2009], которые скорее всего относятся к *F. marathonicus*.

Поскольку состав аппарата, в частности присутствие или отсутствие квадрираматных Sd элементов, является родовым признаком, то возникает вопрос, что к роду *Fahraeusodus* можно отнести только его типовой вид *?Microzarkodina adentata* McTavish, а также другие таксоны с квадрираматными элементами. В этом случае виды без квадрираматных элементов *Fahraeusodus marathonicus* (Bradshaw, 1969) и условно *F. mirus* (Stouge et Bagnoli, 1988) должны быть выделены в новый род. Однако для такого решения в настоящее время недостаточно данных.

Fahraeusodus marathonicus (Bradshaw, 1969)

Табл. 19, фиг. 1–13

1969 *Gothodus marathonicus* Bradshaw, p. 1151, pl. 137, fig. 13–15, text–figs. 3S, T, U.

1969 *Paracordylopus* Bradshaw, p. 1159, pl. 136, figs. 12, 13.

1969 *Roundia* sp. Bradshaw, p. 1160–1161, pl. 137, fig. 17, text–fig. 3A.

1982 "Microzarkodina? marathonicus* (Bradshaw):

Repetski, p. 28–29, pl. 10, figs. 1f–7c, 9a–c.

1982 "Microzarkodina? marathonicus* (Bradshaw):

Ethington, Clark, p. 55–56, pl. 5, figs. 14, 19, 20, 23, 24, 27.

1988 *Fahraeusodus marathonicus* Bradshaw, p. 119, pl. 4, figs. 15–17.

1991 *Fahraeusodus marathonicus* Bradshaw, Smith, p. 36–37, figs. 20 a–g.

2001 *Fahraeusodus marathonicus* Bradshaw, Rasmussen, p. 80–81, pl. 7, figs. 15.

2010 *Fahraeusodus marathonicus* Bradshaw, Bauer, p. 8, pl. 1, figs. 13, 14, 16, 17, 20, 21.

2003 *Fahraeusodus marathonicus* Bradshaw, Pyle et al., p. 77–5, pl. 5, figs. 27–29.

Диагноз. P и S элементы с зубчатым задним и незубчатыми боковыми и передним отростками, M элементы незубчаты геникулярные. У всех типов элементов наблюдается выраженная в разной степени базальная кайма, ограниченная в верхней части острым узким валиком. Главный
зубец и зубчики несут один или несколько тонких центральных ребер.

Описание. Р элементы с прямым, длинным и широким зубцом, коротким передним краем и небольшими, перпендикулярно расположенными по отношению к заднему стрежню зубчиками. Размер зубчиков постепенно и значительно уменьшается по направлению к заднему концу заднего стрежня. Ширина базальной каймы максимальная под основанием зубца и уменьшается к краям переднего и заднего отростков. Представлены Р элементы с коротким и длинным задними стержнями. У зубчиков наблюдается центральное резкое ребро или реже несколько ребер.

Sa элементы симметричные с прямым зубчатым задним и двумя боковыми отростками, занимающими передне-боковое положение. Передняя сторона элемента уплощена и не несет никаких серединных килей или ребер. Зубчики наклонены.

Sc элементы со слегка закругленным задним стрежнем, длинным передним отростком и длинными наклоненными зубчиками. Обе стороны зубца несут ребро, которое заканчивается на пересечении с валиком базальной каймы. Эти элементы похожи на S элементы *Paracordylyodus gracilis*, с которыми неоднократно путали описываемый вид [Курковская, 1985]. Основное отличие заключается в их более коротких зубчиках на заднем стрежне, которые располагаются под прямым углом к оси стрежня, в отличие от наклоненных и более длинных зубчиков у *P. gracilis*.

Sb элементы с более прямым задним отростком, наклоненными зубцами и боковым отростком, доходящим до края основания. Передний отросток длинный, загнут на внутреннюю сторону. Sd элементы сходны с Sa, но отличаются от них симметричным расположением боковых отростков.

Для M элементов характерны длинный и незубчатый задний и относительно длинные передние отростки. Зубец несет серединное ребро, которое не доходит до его основания. M элементы сходны с соответствующими элементами *Protoprioniodus*, которые также в небольших количествах присутствуют в пробах из бурубайтальской свиты.

Замечания. У S элементов этого вида из Казахстана размер зубчиков в целом уменьшается от зубца к заднему краю отростка; значительного увеличения срединных зубчиков по типу *Periodon flabellum*, описанного С. Полер [Pohler, 1994], не отмечается. С. Стоге [Stouge, Bagnoli, 1988] подчеркнул, что для вида характерным признаком является присутствие нескольких ребрышек на зубчиках. Этот признак изменился в коллекции из Казахстана; в большинстве случаев присутствует одно выразженное ребро, только на некоторых зубчиках наблюдаются три или два параллельных ребрышка. Казахстанские Р элементы отличаются от описанных из Америки [Ethington, Clark, 1982; Smith, 1991] значительно более коротким передним отростком и прямо расположенными зубцами на заднем стержне (рис. 70).

Элементы, обнаруженные в нижнем дарривилии Новой Зеландии [Zhen et al., 2009б], практи-
чески неотличимы от соответствующих S элементов *Fahraeusodus marathonensis*, однако P элементы там отсутствуют, что не позволяет уверенно определить вид.

Распространение. *Fahraeusodus marathonensis* на Северо-Американской платформе встречается в широком возрастном диапазоне от зоны *Oeikodus communis* верхней части флоскового яруса по нижнюю часть дарривильского яруса (до середины зоны *Histiodella sinuosa*) [Ethington, Clark, 1982]. Найден в верхах флоскового яруса в Канадских Кордильерах [Pyle, Barnes, 2003] и в Альпах — флосковой серии Кай Хед (Cow Head) Западно-Американской платформы [Stouge, Bagnoli, 1988].

Более молодые дарривильские формы на Новом Египте отсутствуют, что не позволяет уверенно определить вид. Род *Histiodella* представлен в широком возрастном диапазоне от зоны *Histiodella sinuosa* до верхней части дарривильского яруса, однако *P* элементы не обнаружены в Балтоскандии. В Балтоскандии встречается в нижней части дарривильского яруса.

Местонахождение. Найден в разрезе Барговский карьер бурубайтальской свиты (обр. 60 м) в нижней части зоны *Paroistodus horridus*.

Материал. 10 P, 1 M и 10 S элементов.

Род Histiodella Harris, 1962

1962 *Histiodella* Harris, p. 207–208.

Типовой вид. *Bryantodina sinuosa* Graves et Ellis, 1941; Северная Америка, Средний ордовик.

Диагноз. Аппарат включает шесть типов элементов альбидного состава с гиалиновым основанием: бипеннатные P и Sc, тертиопедатные Sb, альтернативные Sa и генерализованы M элементы, для всех элементов характерны листовидные отростки, гладкие или несущие зубчики и маленькая базальная полость.

Замечания. Род *Histiodella* — это один из немногих родов воронковидной формы широкого географического распространения в пределах нижней части среднего ордовика. На материале из Северной Америки [McHargue, 1982] был выявлен эволюционный тренд в развитии этой группы, проявленный в увеличении количества зубчиков и уменьшении соотношения высоты и длины у P элементов, а также в увеличении доли P элементов в аппаратах. Все виды рода *Histiodella* являются шестиэлементными [McHargue, 1982], но у молодых представителей этой линии другие элементы, кроме Pа и Pβ элементов, не обнаружены.

В Казахстане были обнаружены *Histiodella* *Histiodella* cf. *H. altifrons*, *H. sinuosa*, *H. holodentata*, *H. kristinae* и два ранее неизвестных вида (рис. 71). Один из них был описан как *Histiodella levis* Tolmacheva, а для полного описания другого вида — *Histiodella* sp. 1 не хватает фактического материала.

Распространение. Представители рода *Histiodella* встречаются в Северной Америке, Аргентине, Южном Китее, Австралии, Казахстане, Балтоскандии и на Урале. Первые самые древние *Histiodella* (*H. donnae* и *H. altifrons*) до их находок в Казахстане были известны только из Северной Америки, где присутствует вся филогенетическая линия этого рода, за исключением самого молодого ее представителя *H. kristinae* [Bauer, 2010]. Все остальные виды, включая *H. holodentata*, *H. kristinae* и *H. bellburnensis*, являются видами широкого географического распространения и обнаружены практически повсеместно, за исключением *H. holodentata* в Балтоскандии и на
Южном Урале [Stouge, 1984; Du et al., 2005; Zhen et al., 2011; Mestre, Hereida, 2012].

Histiodella holodentata Ethington et Clark, 1982

Табл. 21, фиг. 17, 20

1982 *Histiodella holodentata* Ethington et Clark, p. 47–48, pl. 4, figs. 1, 3, 4, 16.
1984 *Histiodella tableheadensis* Stouge, p. 87–88, pl. 18, figs. 8, 12–14, text-fig. 17.
1998 *Histiodella tableheadensis* Stouge: Zhang, p. 72, pl. 9, figs. 14, 15 (синонимика отсюда).
нет 2001 *Histiodella holodentata* Ethington et Clark: Rasmussen, p. 82, pl. 7, figs. 18–19.
2010 *Histiodella holodentata* Ethington et Clark: Bauer, pl. 2, fig. 9.
2011 *Histiodella holodentata* Ethington et Clark: Zhen et al., p. 227, figs. 14A–B (синонимика отсюда).
2012 *Histiodella holodentata* Ethington et Clark: Mestre, Hereida, p. 144–145, figs. 3A, B.

Диагноз. Па элементы *H. holodentata* относительно короткие и высокие с зубчиками на переднем и более коротком заднем отростках. Верхушка самых крупных зубчиков передней части листа расположена ниже верхушки главного зубца.

Распространение. Этот вид имеет очень широкое географическое распространение и в нижней части дарривильского яруса встречается практически на всех контinentах, кроме, вероятно, Балтоскандии [Zhen et al., 2011; Mestre, Heredia, 2012].

Местонахождение. В Казахстане элементы этого вида обнаружены в карбонатных породах верхнего дарривилья терригенно-карбонатной толщи (обр. Р-204) гор Окпекты, хр. Чингиз и в кенташской свите (обр. Д-9041) западной части Киргизского хребта, Северная Киргизия. Встречены в кремнистом разрезе Баритового карьера бурубайтальской свиты (обр. 60 м) в нижней части зоны *Paroistodus horridus*.

Материал. Всего 25 Р элементов.

Histiodella kristinae Stouge, 1984

Табл. 21, фиг. 21–25

1998 *Histiodella kristinae* Stouge: Zhang, p. 72–73, pl. 9, figs 16–17;
2001 *Histiodella kristinae* Stouge: Rasmussen, p. 84, pl. 8, figs. 1–3, 5.
2004a *Histiodella kristinae* Stouge: Zhen, Percival, p. 97, figs. 14A–L.
2011 *Histiodella kristinae* Stouge: Viira, fig. 9N–O.
2011 *Histiodella kristinae* Stouge: Zhen et al., p. 229, figs. 14C–F (синонимика отсюда).
2012 *Histiodella kristinae* Stouge: Mestre, Heredia, p. 146–147, figs. 3C–G.
Диагноз. Относительно длинные и невысокие Рα элементы несут зубчики на передней и задней частях листа. Верхушка самых крупных зубчиков передней части листа расположена выше верхуш-ки главного зубца.

Распространение. Этот вид встречается практически везде в Северной Америке, Скандинавии, Польше, Эстонии, Китае и Австралии. В разре-зах Балтоскандии обнаружен в верхах кундаского и азериском горизонтах. Сходное распра-страние характерно и для других регионов — Китая, Новой Зеландии, Австралии, Аргентины, Ньюфа-ундленда [Zhen, Percival, 2004a; Mestre, Heredia, 2012].

Местонахождение. Элементы этого вида обнаружены в найманской свите (обр. Н-05/1) хр. Чингиз, Центральный Казахстан. Также найден в разрезе Баритовый карьер бурубайтальской свиты (обр. 60 м) в нижней части зоны Paroistodus horridus.

Материал. 5 элементов.

Histiodella levis Tolmacheva sp. nov.

Табл. 22, фиг. 1–20

Название вида. От лат. levis (ровный, гладкий).

Голотип. Рα элемент (табл. 22, фиг. 7), экз. № 7/22, известняки вулканогенной толщи (обр. Д-1130), Урмбайский район, Северный Казахстан, нижняя часть дарривильского яруса.

Диагноз. Шестизлементный аппарат включает крупные бипеннатные незубчатые Рα и Рβ элементы треугольного очертания с относительно широкой базальной полостью, генукулятные М и серию незубчатых S элементов. Рβ элементы характеризуются выраженным зубцом и выемкой на заднем крае листа.

Описание. Рα элементы листовидные, с удлиненной задней и укороченной передней сторо-ной. Зубец высокий, сильно уплощенный в пе-редне-заднем направлении, наклоненный назад, плавно переходит в листовидное основание. Пе-редний край элемента несет невысокий киль, за-гнутий на внутреннюю боковую сторону. Задний край килеобразный, вогнутый, его степень удли-ненности варьирует в зависимости от степени на-клонна зубца. Боковые стороны элемента гладкие и ровные, продолжение зубца на внешней сторо-не основания отмечается пологим валиком, об-разующим на пересечении с базальной каймой основания отчетливый выступ. Внутренняя сто-рона элемента гладкая. Базальная кайма прояв-лена в виде выпуклого валика, в том числе и на заднем крае листа. Базальная полость неглубокая, относительно широкая.

Рβ элементы по общей форме сходны с Рα эле-ментами, но отличаются от них более удлиненной передней частью листа. Центральная часть базальной полости, соответствующая основа-нию зубца, приходится на центральную часть элемента, в отличие от Рα элементов, у которых центральная часть полости располагается ближе к передней стороне. На внешней боковой стороне листа Рβ элементов зубец продолжается пологим валиком, внутренняя сторона листа слегка во-тнута из-за загибания во внутрь передней части листа. Задний киль листа вогнут, основание эле-мента отделяется от его зубца выемкой, придавая элементу генукулятный облик.

Все S элементы меньше по размеру, чем Р эле-менты, и несут небольшие боковые и задний от-
рость. Базальная полость маленькая, узкая. У симметричных Sa элементов присутствуют короткий задний и два боковых отростка с закругленными базальными краями. Sb элементы асимметричные, с двумя боковыми отростками, один из которых смещен по направлению к передней, другой — к задней стороне элемента. Sc элементы негеникулятные, с уплощенным с боков основанием, высоким зубцом и валиком, идущим от верхушки зубца до нижнего края элемента на внешней боковой стороне. Вдоль нижнего края S элементов может проходить выпуклая базальная кайма. У симметричных Sa элементов присутствуют короткие боковые отростки. Базальная полость небольшая, округленно-квадратная. Вдоль правого зубца проходит широкий зубец заднего отростка, резко уменьшающийся к краю основания, образуя вогнутую линию заднего края элемента. Передний край Pb элементов загнут на внутреннюю сторону. На внешней боковой стороне основания, ближе к переднему краю наблюдается расширение. Базальная полость относительно широкая, ее максимальная ширина отмечается у переднего расширения основания. Элементы изменчивы — отличаются друг от друга длинной и шириной; варьируют от элементов с сильно загнутым передним краем до практически плоских и узких.

М элементы негеникулятные, маленькие, основание низкое, незначительно вытянутое назад. Вдоль широкого зубца проходит пологий валик. Sc элементы негеникулятные, с уплощенным с боков основанием, высоким зубцом и валиком, проходящим от верхушки зубца до нижнего края элемента на одной из боковых сторон. Sa элементы симметричные с задним и двумя боковыми отростками, край которых относительно короткие, не заходят за задний край основания. Sb элементы с широким зубцом и заднебоковым отростком.

Histiodella sp. 1

Табл. 21, фиг. 18–19

Описание. Маленькие листовидные элементы с высокими задним и передним сторонами листа и мелкой зубчатостью по их краю. Зубец крупный, наклоненный назад, выдается за верхний край основания. С боковой стороны элемент имеет прямоугольные очертания с укороченной задней стороной листа. Нижняя сторона элемента прямая, образует с его задней стороной почти прямой угол. Длина листа примерно в два раза превышает его высоту.

Замечания. Среди известных видов рода только *H. minutiserrata* характеризуется мелкой рудиментарной зубчатостью по верхнему краю листа. Однако у последнего вида, описанного из Северной Америки, элементы треугольные, высота и ширина уменьшается от зубца к краям. Кроме того, все *Ra* элементы *H. minutiserrata* более вытянутые в передне-заднем направлении.

Местонахождение. Найден в разрезе Барито-вык карьера бурлукальской свиты (обр. 60 м) в нижней части зоны *Paroistodus horridus.*

Материал. 54 элемента.

Juanognathus jaanussoni Serpagli, 1974

Табл. 20, фиг. 1, 6–12, 14, 17
1974 *Juanognathus jaanussoni* Serpagli, p. 50–51, pl. 11, figs. 8a–12c, pl. 23, figs. 1a–5b (синонимика отсюда).
1982 *Juanognathus jaanussoni* Serpagli: Ethington, Clark, p. 50, pl. 5, figs. 12, 13.
2001 *Juanognathus jaanussoni* Serpagli: Pyle, Barnes, p. 75, pl. 24, figs. 5–8.

Описание. Элементы конические с одним или двумя боковыми отростками, один из которых значительно лучше развит, чем другой. Наблюдается переходная серия элементов от относительно невысоких и широких с развитым боковым отростком (табл. 20, фиг. 12) к элементам, у которых боковой отросток занимает передне-боковое положение, а они сами приобретают дрепаноидный облик (табл. 20, фиг. 9). У элементов с двумя отростками один заходит в виде широкого киля за базальный край основания, другой протягивается вдоль зубца, переходя в слегка расширенный валик на основании, или может достигать края основания (табл. 20, фиг. 1).

Замечания. Описанный вид отличается от *Juanognathus jaanussoni* немного более короткими элементами с широкими боковыми отростками, а также наличием форм с двумя отростками, один из которых значительно больше развит, чем другой (табл. 20, фиг. 1). В типовой коллекции этого вида из Аргентины такие формы отсутствуют, но это может быть связано с небольшим объемом типового материала [Serpagli, 1974]. У элемента *J. jaanussoni*, изображенного Р. Этингтоном и Д. Кларком [Ethington, Clark, 1982, pl. 5, fig. 12], присутствуют оба боковых отростка, однако это отличие от типовых экземпляров из Аргентины авторами не обсуждается.

Вместе с транзитной серией элементов *J. jaanussoni* с широким отростком в казахстанских коллекциях присутствуют немногочисленные узкие элементы с двумя относительно небольшими боковыми отростками (килями), которые не доходят до края основания (табл. 20, фиг. 14, 17). Эти элементы образуют похожую серию от симметричных алятных до дрепаноидных элементов и формально отнесены к *J. jaanussoni.*

Распространение. Находки *Juanognathus jaanussoni* отмечены в Арктике, Северной Америке, на Ньюфаундленде, в Западном Тайланде и Казахстане. Наибольший стратиграфический ин-
тервал распространения этого вида был зафиксирован в Аргентине и Западном Тайланде, где он встречается с верхов флоска до нижней части дарривильского яруса [Agematsu et al., 2008; Mestre et al., 2013]. В Америке и на Новой Зеландии этот вид был найден в интервале зон *Jumodontus gananda* – *Reuterodus andinus* верхней части флоска — нижней части дапинского ярусов [Landing, 1976; Ethington, Clark, 1982]. В Казахстане обнаружен только в карбонатных отложениях нижнего дарривила.

Местонахождение. Найден в нейшанской свите (обр. N-05/1) Центрального Казахстана, вулканической толще (обр. 11130) Урбайского района, Северный Казахстан, и в узунбулакской свите (обр. 156) Чу-Илийских гор, Южный Казахстан.

Материал. 8 элементов.

Juanognathus variabilis Serpagli, 1974

Табл. 20, фиг. 2–5

1974 *Juanognathus variabilis* Serpagli, p. 49–50, pl. 11, figs. 1a–7c, pl. 22, figs. 6–17, text-fig. 8 (синонимика отсюда).
2000 *Juanognathus variabilis* Serpagli: Дубинина, c. 211, табл. XII, фиґ trou–26, 28, 33.
2004 *Juanognathus variabilis* Serpagli: Zhen et al., pp. 53–54, pl. 4, figs 1–14 (синонимика отсюда).
2009b *Juanognathus variabilis* Serpagli: Zhen et al., p. 275, figs. 6a–1.

Замечания. Аппарат этого вида реконструируется как состоящий из семи или шести типов элементов, в том числе в них включают генитальные M элементы (*Oistodus* selenopsis Serpagli, 1974), а некоторые специалисты и скандодиформные R элементы [Albanesi et al., 1998; Zhen et al., 2004]. Конические S элементы с двумя боковыми килими, образующие симметрично переходную серию, наиболее легко распознаются и более многочисленны в коллекциях. В коллекциях из Казахстана присутствуют только Sa и Sd элементы этого вида.

Распространение. Этот вид встречается практически повсеместно, кроме Балтоскандии и Сибири, где его находки неизвестны. В Британской Колумбии (Канада) встречается в флоска ярусе в пределах верхней части зоны *Oepikodus communis* — зоны *Jumudontus gananda*. Его распространение в Северной Америке, Аргентине, Южном Китае, Австралии ограничено средней и верхней частями флоска яруса. В Казахстане был найден в разрезе Батырбай Малого Кара-тау в интервале зон *Prioniodus elegans* и *Oepikodus evae*.

Местонахождение. Найден в кенташской толще (т. н. 9066) западной части Киргизского хребта, Северная Киргизия (нижняя часть фло ска яруса), и в каратальской свите (обр. PO-05) Джалал-Найманского района, Южный Казахстан (зона Oepikodus evae верхней части фло ска яруса нижнего ордовика).

Материал. 8 элементов.

Juanognathus sp. 1

Табл. 20, фиг. 20–22

2006 *Juanognathus sp. B* : Agematsu et al., fig. 7 (19).

Описание. Конические элементы с невысоким основанием, широким зубцом и развитыми боковыми отростками — килими, длина которых равна или чуть превышает ширину основания элемента. Кили направлены в боковые стороны, так что их дистальные части не заходят за относительно прямой базальный край основания. Базальная полость небольшая, щелевидная. Элементы уплощены в передне-заднем направлении, а их основание слегка подвернуто назад.

Замечания. Все обнаруженные формы являются Sd элементами рода *Juanognathus*. В относительно небольшой коллекции конодонтов из единственного местонахождения в Казахстане, где были найдены эти элементы, присутствуют также и редкие элементы Juanognathus cf. *J. jaanus soni* с одним боковым отростком. Но в нейшанской свите, где элементы последнего вида относительно многочисленны, уплощенные формы с двумя боковыми отростками не встречены. Поэтому скорее всего эти элементы относятся к самостоятельному виду, а не к Juanognathus cf. *J. jaanus soni*.

Найденный в дарривильских отложениях Западного Тайланда *Juanognathus sp. B* в заполняет *Juanognathus sp. 1* широкими боковыми отростками и загнутым назад основанием [Agematsu et al., 2006].

Местонахождение. Известны из вулканической толщи (обр. 11130) Урбайского района, Северный Казахстан.

Материал. 8 элементов.

Род Kallidontus Pyle et Barnes, 2002

2002 *Kallidontus* Pyle et Barnes, p. 53.

Типовой вид. *Kallidontus serratus* Pyle et Barnes, 2002; свита Кечика (Kechika) и Скоки (Skoki), Британская Колумбия, Канада, от зоны *Scolopodius*
subrex до зоны Oepikodus communis, верхняя часть тремадокского — нижняя часть флоского ярусов, нижний ордовик.

Диагноз. В аппарат входят конические S и платформенные Р элементы с широким основанием и двумя-трema отростками. Внешняя поверхность элементов несет ярко выраженную орнаментацию в виде бугристости, поперечной полосчатости или небольших зубчиков. Для всех элементов характерны большая и глубокая базальная полость и тонкие стенки основания.

Kallidontus corbatoi (Serpagli, 1974)

Табл. 8, фи г. 7—9, 12, 13, 17, 18, 22, 24
1974 Fryxellodontus? corbatoi Serpagli, p. 47—48, pl. 10, fig. 1—6c, pl. 22, figs. 1—5.
Конические S элементы с глубокой базальной полостью и тремя килями (задний и два боковых), на которых могут быть проявлены зубчато-зубчатые выступы; диагностические Pb элементы с широким основанием, боковыми или задними и боковыми отростками и пятью или шестью поперечными ребрами, которые на пересечении с килями отростков образуют выступы или широкие зубцы.

Замечания. В первоописании вида были разделены стратиграфические более ранние и поздние формы Pb элементов. У ранних форм наблюдаются два боковых зубчатых отростка, у поздних развит и задний отросток. В кенташской свите обе формы Pb элементов были встречены вместе в одном образце, что, возможно, указывает на более сложный состав аппарата *K. serratus*, чем на его внутривидовую стратиграфическую изменчивость.

Распространение. До находок элементов в Казахстане этот вид был описан только в Британской Колумбии (Канада) в верхней части флоского яруса нижнего ордовика.

Местонахождение. В кушекинской свите западной части Киргизского хребта, Северной Киргизии, в нижней части флоского яруса нижнего ордовика.

Материал. 15 P и 6 S элементов.

Род Lundodus Bagnoli et Stouge, 1997

Типовой вид. *Acodus gladiatus* Lindström, 1955; Центральная Швеция, флоский ярус нижнего ордовика.

Диагноз. Аппарат с незубчатыми P и зубчатыми S элементами. P элементы с коротким невысоким основанием и длинным широким зубцом; S элементы с высоким основанием и килеобразными отростками. Все элементы с глубокой базальной полостью.

Распространение. Распространение этого монотипического рода соответствует распространению вида *Lundodus gladiatus*.

Lundodus gladiatus (Lindström, 1955)

Табл. 8, фиг. 1–6, 11

1974 *Acodus? gladiatus* Lindström: Serpagli, p. 34–35 (частично), pl. 7, fig. 10; pl. 20, figs. 4, 5 (только).
1987 *Stolodus stola* (Lindström): An, p. 191–192, pl. 22, fig. 20–23; pl. 23, fig. 1–2.
1997 *Lundodus gladiatus* (Lindström): Bagnoli, Stouge, p. 146, pl. 3 fig. 13–16 (полная синонимика).

Замечания. При мультиэлементной реконструкции в один вид были объединены четырехугольные в поперечном сечении S элементы с зубчатыми краями передних, задних и боковых килей, сходные по общей морфологии с соответствующими элементами *Stolodus stola* Lindström, и незубчатые P элементы [Bagnoli, Stouge, 1997]. Было отмечено, что, несмотря на общее сходство с аппаратом рода *Stolodus*, у описываемого таксона не зафиксированы ни Sa, ни M элементы. В бурубайтальской свите впервые были найдены Sc элементы, которые дополняют состав аппарата *Lundodus gladiatus*. Эти элементы характеризуются высоким узким основанием с углопленными боковыми сторонами и острыми, зубчатыми передним и задним килями. Зубчики небольшие, разобщенные, направлены почти перпендикулярно по отношению к килю. Среди P элементов встречены как формы с очень небольшим коротким и невысоким основанием, так и элементы с удлиненной задней стороной основания. Положе передне-боковое ребро на основании выражено в разной степени — от полого валика...
Т. Ю. Толмачева

до широкого ребра. На поверхности некоторых R элементов видна тонкая полосчатость.

Местонахождение. В разрезах Баритовый карьер (от 20 до 30 м), Раковая горка (обр. P10069) и гор Котнак (обр. OS130-х) бурубайтальской свиты в пределах зоны Oeiikodus evae. В караталинской свите (обр. PO-05) Джалаир-Найманско го района, Южный Казахстан, зона Oeiikodus evae верхней части флоского яруса нижнего ордовика.

Источники. 35 элементов.

Род Naimanodus Tolmacheva, 2013

Диагноз. Конические конодонты альбидного состава с высоким основанием, длинным, слегка наклоненным зубцом и тремя килями: передним и двумя задне-боковыми. Уплощенная задняя сторона несет глубокую продольную борозду. Аппарат состоит из трех типов элементов: удлиненных, в различной степени загнутых на боковую сторону (S элементы), удлиненных симметричных (Sa элемент) и уплощенных, практически симметричных с центрально расположенной бороздой на задней стороне (P элементы).

Сравнение. Sa элементы Naimanodus сходны с некоторыми элементами рода Parapanderodus, у которых присутствует как задний центральный желобок, так и две симметрично расположенные задне-боковые выемки (например, P. cf. consimilis (Moskalenko) [Stouge, 1984]), но отличаются значительно более заостренным задне-боковым краем и килеватым передним краем.

Распространение. Распространение рода соответствует распространению единичного, входящего в него вида Naimanodus degtyarevi.

Прилож. 25, фиг. 1–11

Описание. Небольшие нетеникулятные конодонты с высоким основанием, плавно переходящим в длинный, прямой и слегка наклоненный зубец. Базальная полость глубокая, с четко выраженной верхушкой, приближенной к передней стенке элемента. Передняя стенка базальной по лости вогнутая.

Задняя сторона основания плоская или слегка вогнутая. Боковые стороны элементов гладкие, ровные или слегка вогнутые в центральной и передней части элемента. Поперечное сечение основания практически треугольное. Базальная часть основания покрыта продольными мелкими ребрышками, при этом ребрышки не доходят до самого базального края, оставляя его относительно гладким. Уплощенная задняя сторона элементов также ребристая и несет продольную борозду, проходящую от самого базального края до верхушки зубца. Задняя сторона по обе стороны от борозды может быть слегка вогнута, центр впадины располагается ближе к заднебоковым килям.

У асимметричных удлиненных элементов зубец в разной степени развернут относительно основания, а задняя борозда расположена не по центру задней стороны элемента, а немного асимметрично. Субсимметричные удлиненные элементы похожи на удлиненные, но отличаются от последних общей симметрией и центральным расположением задней борозды. Уплощенные элементы относительно более короткие, с более низким основанием и невысокой базальной полостью. Передняя сторона элемента более изогнута за счет резко наклоненного назад зубца. Борозда на задней стороне элемента занимает центральное положение.

Местонахождение. Вид был обнаружен в пяти местонахождениях в пределах западной части Центральноазиатского складчатого пояса: в найманская свита (обр. N-05/1), Центральный Казахстан, вулканогенной толще (обр. 11130) Урумбайского района, Северный Казахстан, кенташской свите (обр. Д-9041), Северная Киргизия, узунбулакской свите (обр. 156) Чу-Илийских гор, Южный Казахстан. Встречается также в Горном Алтае и, возможно, на Ньюфаундленде [Толмачева, 2013].

Материал. 82 элемента.
Род Oelandodus van Wamela, 1974

Типовой вид. Oistodus elongatus Lindström, 1955; Центральная Швеция, флюксийский ярус нижнего ордовика.

Замечания. В составе аппарата рода присутствуют только генериндовые элементы, уплощенные с боков, с ребрами или без ребер на боковых сторонах. К М элементам отнесен ярко выраженный ойстодиформный элемент, более или менее прямые отнесены к Р, а остальные — с разной степенью изогнутости — к S элементам.

Cостав рода. В настоящее время к роду относится один вид O. elongatus (Lindström), а O. costatus van Wamela отнесен к Protoprionioidus [An, 1987].

Oelandodus elongatus (Lindström, 1955)
Табл. 9, фиг. 13, 17–26
1955 Oistodus elongatus Lindström, p. 574, pl. 4, fig. 32, 33, text-fig. 5b.
? 1974 Oistodus sp. 1: Serpagli, fig. 1, нет 2 и 3.
? 1988 Oelandodus aff. O. elongatus (Lindström): Stouge, Bagnoli, p. 120, pl. 4, fig. 1, 2, 5, 6.
2002 Oelandodus elongatus (Lindström): Pyle, Barnes, p. 105, pl. 11, fig. 23 (только).
2003 Oelandodus elongatus (Lindström): Pyle, Barnes, pl. 6, fig. 5.

Замечания. М. Линдстрём [Lindström, 1955] описал Oelandodus elongatus как элементы без ребра, а формы с ребром, доходящим до края основания, отнес к O. aff. O. elongatus. Изображенный В. ван Велем триангулиформный элемент Oistodus elongatus с резко выступающим и доходящим до края основания боковым ребром, скорее всего, принадлежит к другому виду, вероятнее всего, к Oistodus lanceolatus [van Wamal, 1974, pl. 7, fig. 3]. Хотя, возможно, на этом нанесенном элементе некорректно изображено резкое ребро на зубце, которое переходит в пологий, но отчетливый валик на основании. Элементы из Казахстана соответствуют описанию типового материала, за исключением отсутствия выраженного валика на основании у «триангулиформных» элементов. Однако такие элементы могли не попасть в немногочисленную коллекцию этого вида.

Элементы, обнаруженные С. Стоуге и Г. Багноли [Stouge, Bagnoli, 1988] на Ньюфаундленде, описаны как несущие ребра на одной или двух боковых сторонах, однако в приведенном ими сравнении этот признак не упоминается, хотя он явно отличает их элементы от типового материала. Другие признаки (форма М элементов, ребро, не доходящее до края основания), которые они приводят в качестве обоснования определения элементов из Ньюфаундленда как O. aff. elongates, не отличают эти формы от O. elongatus из Казахстана. Хотя изображенный материал из Ньюфаундленда фактически идентичен казахстанскому, тем не менее нет уверенности в идентичности этих форм, поскольку такой признак, как два боковых ребра, не встречается у казахстанских форм Oelandodus elongatus. Изображения элементов этого рода из Арктической Канады единичны и не описаны [Pyle, Barnes, 2002, 2003].

С. Стоуге и Г. Багноли [Stouge, Bagnoli, 1988] отдалили прямые Р элементы с вытянутым передним углом от S элементов. В нашем материале наблюдается переход от более выпрямленных к более наклоненным формам, четкие Р и S не выделяются. Также нет закономерных различий в форме элементов с ребрами и без ребер.

Распространение. Встречается в разнофациальных отложениях флюксийского яруса в Балтоскании, Казахстане, Ньюфаундленде и Арктической Канаде.

Местонахождение. В разрезах Баритового карьера (20 м), Памятник природы — 9706 (от 4 по 16,6 м), Раковая горка (обр. P10069) и гор Котнак (обр. O5131 и O5132-1) бурубайтальской свиты в пределах зон Acodus longibasis и Prionioidus oepiki верхней части тренадокского — нижней части флюксийского ярусов. В известниках кенташской толщи (обр. 9066) западной части Киргизского хребта, Северная Киргizia, в нижней части флюксийского яруса нижнего ордовика.

Материал. 36 элементов.

Род Oepikodus Lindström, 1955
1955 Oepikodus Lindström, p. 570.

Типовой вид. Oepikodus smithensis Lindström, 1955; Центральная Швеция, нижний ордовик.

Диагноз. Семиэлементный аппарат рода включает пастиинатные Pa и Pb элементы, макелятный М и серию квадрираматных Sb, Sc и Sd элементов с тонкими длинными отростками. Sa элементы модифицированные квадрираматные.

Замечания. В Казахстане наиболее широко распространен вид Oepikodus evae [Lindström, 1955], элементы которого как в карбонатных, так и в кремнистых отложениях численно доминируют в комплексах верхней части флюксийского яруса.
яруса. Помимо этого вида в кремнистых отложениях бурубайтальской свиты в нижней части зоны Oepikodus evae вместе с видом-индексом присутствует Oepikodus cf. O. pincallyensis Zhen, 2003, а в кремнях кушекинской свиты Oepikodus intermedius (Serpagli, 1974).

В разрезе кушекинской свиты, охватывающей интервал самой верхней части флошского и нижней части дапинского ярусов, O. intermedius является преобладающим видом, тогда как Oepikodus evae встречается только в самых низах изученного разреза, где представлен только единичными экземплярами. O. intermedius из кушекинской свиты, изученный непосредственно в породе и шлифах, характеризуется крупной зубчатостью на заднем стержне Р элемента и его гладкими передним и задним отростками. Задние, утолщенные вдоль базального края отростки S элементов имеют местами четко выраженный хиндиоделловый винтовой тип зубчатости. Вероятно, вид O. intermedius замещает O. evae в самой верхней части флошского яруса в глубоководных фациях Казахстана, однако это не удалось подтвердить из-за менее плотного опробования этого интервала в других разрезах. Надо сказать, что Oepikodus communis (Ethington et Clark, 1964) широко распространен в Северной Америке, Аргентине и Южном Китае, в Казахстане не был обнаружен.

Распространение. Представители рода встречаются повсеместно в пределах нижнего ордовика. При этом уже давно отмечено, что Oepikodus evae характерен для склоновых и глубоководных отложений [Stouge, Bagnoli, 1988; Lehnert et al., 2013], тогда как он редко встречается в мелководных тепловодных фациях, в том числе в Восточной Гондване и Перигондванских террейнах [Zhen et al., 2007]. Широкое распространение в Казахстане O. evae, а также O. intermedius подтверждает их фациальную приуроченность к открытморским/океаническим обстановкам.

Oepikodus cf. O. pincallyensis Zhen, 2003

Табл. 10, фиг. 10, 13

Диагноз. Аппарат включает семь типов элементов: пастинатные Pa и Pb элементы с зубчатыми задними отростками; одном зубчатым боковым отростком и завернутым на боковую сторону гладким (Pb) или зубчатым (Pa) передним отростком и квадрираматными Sa, Sc, Sb и Sd элементами.

Р. элемент из Ньюфаундленда, описанный как Oepikodus cf. O. intermedius (Serpagli), может быть отнесен к O. pincallyensis, так как имеет характерную кайму по базальному краю и один зубчатый боковой отросток [Stouge, Bagnoli, 1988].

Распространение. Распространение O. pincallyensis в Восточной Австралии приурочено к нижней части зоны Oepikodus evae [Zhen et al., 2003]. В Казахстане Oepikodus cf. P. pincallyensis встречается в таком же достаточно узком стратиграфическом интервале.

Местонахождение. В разрезе Баритовый карьер (обр. 23 м) бурубайтальской свиты Юго-Западного Прибалхашья, Южный Казахстан.

Материал. 12 Р элементов.

Род Paracordyodus Lindström, 1955

Типовой вид. Paracordyodus gracilis Lindström 1955; Центральная Швеция, нижняя часть среднего ордовика.

Диагноз. Пятиэлементный аппарат Paracordyodus состоит из двух пар долаборатных Р элементов, восьми одинаковых долаборатных S элементов, одного долаборатного Sa элемента и пары геникулятных M элементов. Все элементы альбидного состава, тонкие и уплощенные с боков, с маленькой базальной полостью. S элементы с тонким главным зубцом и противозубцом
и тонкими, загнутыми вниз стержнями с длинными зубчиками.

Распространение. Распространение рода соответствует распространению единственного, относящегося к этому роду вида *Paracordylodus gracilis*.

Paracordylodus gracilis Lindström, 1955

Табл. 11, фиг. 1–3, 5, 6

1955 *Paracordylodus gracilis* Lindström, p. 584, pl. 6, figs. 11, 12.
1988 *Paracordylodus gracilis* Lindström: Stouge, Bagnoli, p.126, pl. 8, figs. 16–19 (синонимика отсюда).
2002 *Paracordylodus gracilis* Lindström: Pyle, Barnes, p. 105, pl. 12, figs. 6–9.
2009в *Paracordylodus gracilis* Lindström: Zhen et al., p. 13, figs. 6А–F.

Описание. Все элементы *Paracordylodus gracilis* относительно небольшие, сильно уплощенные с боков и тонкие. Базальная полость узкая и неглубокая. S и M элементы на обеих сторонах зубца несут тонкое, симметричное ребро, не доходящее до края основания или края противозубца. Р элементы долаборатные, с наклоненным до 30° назад прямым или слегка загнутым зубцом и относительно прямым и коротким задним стержнем. Длина стержня не превышает длины зубца. На стержне располагается от 3 до 6 зубчиков. Pa и Pb элементы отличаются длиной заднего стержня. S элементы более крупные, чем Р элементы, с тонким зубцом и длинным противозубцом. Задний стержень сильно загнут вниз и несет от 8 до 12 тонких и длинных, расположенных наклонно зубчиков. Размеры зубчиков слегка увеличиваются от зубца к дистальному краю стержня. Sa элементы по размеру значительно меньше S элементов, среди которых не выделяются морфотипы.

Замечания. *P. gracilis* из-за характерной морфологии относится к наиболее легко идентифицируемым видам, распознаваемым даже по фрагментарно сохранившимся элементам. Его первая мультиэлементная реконструкция была предложена У. Свитом и С. Бергстрёмом [Bergström, Sweet, 1972], объединившиими паракордилодиформные и оистодиформные элементы. После этого были реконструированы аппарата этого вида, включающие: два пары P элементов, девять S элементов (включая Sa элемент) и два M элемента [Tolmacheva, Löfgren, 2000; Tolmacheva, Purnell, 2002] (рис. 72).

Рис. 72. Аппарат вида *Paracordylodus gracilis*, включающий 4 P элемента, 8 S элементов, 1 Sa элемент и 2 M элемента, по [Tolmacheva, Purnell, 2002]

Распространение. *P. gracilis* является видом широкого географического распространения. Его находки известны в Казахстане, Балтийском море, Северной Америке, Канаде, Австралии, Северном и Южном Китае, Корее, Аргентине [Tolmacheva, Löfgren, 2000]. Хотя он не найден на Сибирской платформе, но его элементы обнаружены в северном обрамлении платформы на

о. Беннетта архипелага Новосибирские острова (материал Н. Б. Кузьмицева и М. К. Данукало вой (ГИН РАН)). В большинстве случаев присутствует в открытоморских и глубоководных отложениях, тогда как в мелководных он встречается относительно реже. В типовом регионе в Бал тоскандине появляется чуть ниже нижней грани ци флюсовых ярусов (середина зоны Paroiostodus proteus) и исчезает в интервале зоны Priioniodus elegans. В глубоководных фациях Казахстана P. gracilis появляется в пределах зоны Acodus longibasis и продолжает существовать в пределах зоны Oepikodus evae.

Местонахождение. Во всех изученных крем нищих разрезах и местонахождениях Казахстана в интервале от зоны Acodus longibasis до зо ну Oepikodus evae. Единичные экземпляры найдены в кенташской толще (обр. D-9066) западной части Киргизского хребта, Северная Киргизция, в ниж ней части флюсового яруса.

Материал. Более 1000 элементов и их естественных группировок.

Род Parapanderodus Stouge, 1984
1984 Parapanderodus Stouge, p. 65.

Типовой вид. Parapanderodus arcuatus Stouge, 1984 (= Parapanderodus striatus (Graves et Ellison, 1941); свита Тейбл Нед (Table Head), Западный Ньюфаундленд, дарривильский ярус, средний ордовик.

Диагноз. Аппарат состоит из простых, кони ческих элементов гиалинового состава. Элементы тонкие, округленные в сечении с продольной тонкой ребристостью, могут нести до двух глубоких продольных желобков на задней стороне элемента.

Замечания. К роду Parapanderodus были отнесены несколько видов, отличающихся коли чеством желобков, глубиной базальной полости и общими очертаниями элементов [Stouge, 1984; Stouge, Bagnoli, 1988]. После находок нескольких кластеров этого рода в нижнем ордовике Гренландии часть видов была объединена в один вид P. striatus [Smith, 1991]. Позднее к Parapanderodus были отнесены только нижнеордовикские фор мы гиалинового состава, а альбидные элементы было предложено объединить в род Striatodontus Ji et Barnes, 1994 [Ji, Barnes, 1994].

Распространение. Представители рода Parapanderodus распространены практически повсемест но с нижнего по нижнюю часть верхнего ордо вика.

Parapanderodus striatus (Graves et Ellison, 1941)
Табл. 29, figs. 13–17, 22–24
1941 Drepanodus striatus Graves et Ellison, p. 11, pl. 1, figs. 3, 12.
1991 Parapanderodus striatus (Graves et Ellison): Smith, p. 49, figs. 28 a–f, 29 a–d, 30 (синонимы отсюда).
1994a Parapanderodus striatus (Graves et Ellison): Ji, Barnes, p. 49, pl. 21, figs. 1–10.
1997 Parapanderodus quietus Bagnoli, Stouge, p. 150, pl. 5, figs. 6–10.
2011 Parapanderodus striatus (Graves et Ellison): Zhen et al., p. 231, figs. 15A–D.

Описание. В аппарат Parapanderodus входят удлиненные элементы с желобком на задней стороне, окруженные элементы с двумя заднебоковыми желобками и формы с двумя желобками, но уплощенные в передне-заднем направлении. Все элементы имеют гиалиновый состав.

У удлиненных и тонких элементов с желобком на задней стороне базальный край элементов ровный, располагается под прямым углом к сторонам основания. Поверхность элементов мелкоребристая, при этом ребрышки не доходят до края основания, оставляя гладкую базальную, относительно широкую кайму. Выделяются элементы с коротким, слегка округленным основанием и с длинным основанием. Поперечное сечение может быть округленное, а может быть «сердцеобразное» с широко расходящимися заднебоковыми краями элемента. Желобок может быть ярко выражен и располагаться как симметрично, так и слегка асимметрично, а может быть и едва заметен.

Элементы с двумя заднебоковыми желобками могут быть относительно короткими, с высоким основанием и небольшим прямым зубцом, и удлиненные с изогнутым длинным зубцом. Ребристость не доходит до базального края основания. Короткие элементы симметричные. Задний базальный край основания, загнут между желобками, образует небольшой протягивающийся вниз выступ. Уплощенные в передне-заднем направлении элементы короткие, с небольшим зубцом, слегка вогнуты назад.

Замечания. Элементы P. striatus во всех изученных местонахождениях относительно редки, что не позволяет проследить изменчивость его морфологически разнообразных элементов.

Распространение. Находки P. striatus отмечены в флюсом, дапинском и нижней части дарривильского яруса нижнего и среднего ордовика в Северной Америке и Канаде [Smith, 1991], Се-
Местонахождение. Только в карбонатных отложении Казахстана. В вулканогенной толще (обр. 11130) Урумбайского района, Северный Казахстан, в найманской свите (обр. N-05/1) хр. Чингиз, Восточный Казахстан, в узунбулакской свите (обр. 156) Чу-Илийских гор и кара-хр. Чингиз, Восточный Казахстан, в найманской свите (обр. N-05/1) Караканского увала в Северной Бетпак-Дале, Южный Казахстан.

Материал. 25 элементов.

Род Periodon Hadding, 1913

1913 Periodon Hadding, p.

Типовой вид. Periodon aculeatus Hadding, 1913.

Распространение. Представители рода встречаются повсеместно от флюсского яруса нижнего ордовика до низов хирнантского яруса верхнего ордовика, но в большом количестве в более глубоководных и открытоморских фациях.

Periodon aculeatus Hadding, 1913

Табл. 13, фиг. 19–25; табл. 32, фиг. 1–5, 7–10, 12, 13

1913 Periodon aculeatus Hadding, p. 111, pl. 1, fig. 14.

1955 Periodon aculeatus Hadding: Lindström, p. 110, pl. 22, figs. 10, 11, 14–16, 35.

1978 Periodon aculeatus Hadding: Löfgren, p. 74, pl. 10, fig. 1, pl. 11, figs. 12–26.

2001 Periodon aculeatus Hadding: Rasmussen, p. 110–113, pl. 13, figs. 8–11.

2009а Periodon aculeatus Hadding: Zhen et al., p. 145–148, figs. 6A–R, 8N, 10L.

2011 Periodon aculeatus Hadding: Zhen et al., p. 231–232, figs. 16A–P.

Замечания. Для P элементов Periodon aculeatus характерны длинные передний и задний отростки, несущие до 5–6 зубчиков. Передний отросток Pa элемента сильно развернут по отношению к заднему и несет до четырех и более зубчиков. У Sa элементов присутствуют небольшие боковые отростки с мелкой плотной зубчатостью и дополнительные, сильно увеличенные зубчики на заднем стержне. У геникулятных M элементов на передней стороне основания и зубце расположено несколько хорошо выраженных зубчиков.

Распространение. Этот род встречается практически повсеместно в широком спектре фаций с середины дарривильского до средней части сандбийского яруса.

Местонахождение. В верхнем дарривилье терригенно-карбонатной толщи (обр. P-204) гор Окпекты и в бестамакской свите (обр. 533а) хр. Чингиз, Восточный Казахстан, а также в узунбулакской свите (обр. 156) Чу-Илийских гор, Южный Казахстан.

Материал. Более 100 экз.

Periodon macrodentatus (Graves et Ellison, 1941)

Табл. 27, фиг. 1–14, 17, 19, 20

1941 Ozarkodina macrodentata Graves et Ellison, p. 14, pl. 2, figs. 33, 35, 36.

2004b Periodon macrodentatus (Graves et Ellison): Zhen, Percival, p. 168–170, fig. 10A–N.

2009d Periodon macrodentatus (Graves et Ellison): Zhen et al., p. 45–47, fig. 9A–T.
Замечания. *P. macrodentatus* отличается от морфологически наиболее сходного *P. zgierzensis* выраженными утолщениями вдоль стержней Р элементов, а также зубчатым и длинным передним отростком у М элементов, который имеет сильно изогнутую базальную часть. У бипеннатных Ра элементов на переднем отростке 3, на заднем 5 зубчиков; у Pb элементов на переднем отростке 3—4 зубчика, на заднем до 6. У Pb элементов передних и задних стержней развернуты под углом 90–100°, а не 100–130°, как у *P. zgierzensis* [Rasmussen, 2001]. Хорошо развитые боковые стержни Sa элементов несут зубчики. Сd элемент с хорошо развитым зубчатым передне-боковым отростком.

От М элементов *P. aculeatus* отличается зубчиками, которые развиты больше на переднем отростке, а не на передней стороне зубца, как у последнего вида. Кроме того, у *P. aculeatus* более ярко выражен главный крупный зубец на заднем стержне у Sa, Sc, Sb элементов, а передний стержень Ра элементов более загнут вниз. В работе Дж. Жена [Zhen et al., 2009] в аппарате *P. macrodentatus* предложено выделить принципиально новый тип Сd элемента, который очень сходен с алятным Sa элементом, но является асимметричным.

Распространение. Этот вид широко распространен на многих континентах. Помимо Балтийского бассейна, он встречен в Австрии и Новой Зеландии [Zhen, Percival, 2004b; Zhen et al., 2009], Америке [Bradshaw, 1969]; Канаде [Uyeno, Barnes, 1970]. В Скандинавии распространен в стратиграфическом интервале от зоны *Lenodus variabilis* по зону *Eo placognathus suecicus* [Rasmussen, 2001]. Вид многочислен в Казахстане как в кремнистых, так и карбонатных отложениях дапинского и нижней частей дарривильского ярусов. У бипеннатных Ра элементов на переднем отростке 3, на заднем 5 зубчиков; у Pb элементов на переднем отростке 3—4 зубчика, на заднем до 6. У Pb элементов передних и задних стержней развернуты под углом 90–100°, а не 100–130°, как у *P. zgierzensis* [Rasmussen, 2001]. Хорошо развитые боковые стержни Sa элементов несут зубчики. Сd элемент с хорошо развитым зубчатым передне-боковым отростком.

Материал. В разрезе Баритовый карьер (обр. 40, 49, 60) буртультайльской свиты Юго-Западного Прибалхашья и в нейманской свите (обр. N-05/1) хр. Чингиз, Восточный Казахстан.

Periodon grandis (Ethington, 1959) Табл. 32, фиг. 6, 11, 19–21

1959 *Loxognathus grandis* Ethington, p. 281, pl. 40, fig. 6.

1999 *Periodon grandis* (Ethington): Zhen et al., p. 90, figs. 8:19, 21.
1999 *Periodon grandis* (Ethington): Furey-Greig, p. 310, pl. 2, figs. 21, 22, pl. 3, figs. 1, 2.
2003a *Periodon grandis* (Ethington): Zhen et al., p. 41–43, figs. 6 D–L.

Замечания. *P. grandis* был впервые описан как *Loxognathus grandis* s.f. Ethington, 1959, который в настоящее время считается Sb элементом в позиционно-аналоговой номенклатуре. Мульти-элементный состав аппарата *P. grandis* установлен уже давно [Bergström, Sweet, 1966]. Одна из основных проблем этого вида заключалась в крайне изменчивой морфологии геникулятных *М* элементов, встречающихся вместе с типичными для *P. grandis* S элементами. При этом геникулятный, или фалодиформный, М элемент, для которого характерно большое треугольной формы осно-•

Совместное нахождение аккулетовых S элементов вместе с типичными грандисовыми *М* элементами, встречаемыми М элементы с сильно удлиненным зубчатым передним краем и вытянутым в заднем направлении основанием, т. е. обладающие признаками более древнего вида *P. aculeatus* [Mельников, 1999; Kennedy et al. 1979; Zhang, Barnes, 2007]. Также часто отмечалось наличие переходных форм с укороченным зубчатым передним краем и сильно удлиненным задним [McCracken, 2000]. На базальном крае типичных по морфологии грандисовых *М* элементов может также наблюдаться сильный изгиб, наиболее ярко выраженный у *P. aculeatus* [Zhen et al., 1999; Zhen et al., 2003a].

В коллекции конодонтов из ержанской и кызылкаинской серий совместно встречаются как типично акулеатовые геникулятные элементы, так и типично грандисовые [Tolmacheva et al., 2009]. Кроме того, встречены и переходные формы с укороченным передним краем. Грандисовые элементы преобладают, составляя примерно 70% от общего числа геникулятных элементов.

Среди S элементов встречаются только Sc, Sd и Sa элементы. Достоверные Sb элементы не найдены, возможно, потому, что у видимых только с двух сторон элементов в шлифах не удается оценить степень отклонения переднего края элемента в боковую сторону. Среди S элементов есть формы с более ярко выраженным хиндеоделловым характером зубчатости, а есть с менее выраженным. Иногда между главным зубцом и одной крупным зубцом заднего стержня расположено 7–8 относительно одинаковых зубчиков. В целом хиндеоделловый характер зубчатости значительно лучше проявлен у Sc, чем у Sa и Sd элементов. Часто в кремнях встречаются полностью сохранившиеся элементы с дистальным концом заднего стержня, который практически всегда обломан у конодонтов, выделенных из карбонатов. У Sd элементов, у которых отсутствует хиндеоделловая зубчатость в передней части заднего стержня до главного зубца, она прекрасно проявлена у Sc, чем у Sa и Sd элементов. Часто в кремнях встречаются полностью сохранившиеся элементы с дистальным концом заднего стержня, который практически всегда обломан у конодонтов, выделенных из карбонатов. У Sd элементов, у которых отсутствует хиндеоделловая зубчатость в передней части заднего стержня до главного зубца, она прекрасно проявлена в его дистальной части. В коллекции присутствуют несколько элементов, которые предположительно идентифицированы как ?Р элементы. Это долабраторные элементы с прямым коротким главным зубцом и задним стержнем, несущим 5–6 крупных широких зубчиков. Передний край гладкий, без зубчиков. Основание со слегка вздутыми боковыми сторонами и выступами на базальном крае. Похожие элементы были найдены в ЮгоВосточной Австралии и отнесены к ?Sd элементам P. grandis [Zhen et al., 2003a]. Присутствие этих элементов также подтверждает возможность существования вместе с P. grandis другого вида этого же рода. Скорее всего вместе с P. grandis в пробах из ержанской и кызылкаинской свит сосуществует вид P. grandis bellus Moskalenko, 1988 (= P. mirnyensis Zhang et Barnes, 2007)

Распространение. Встречается повсеместно как в кремнистых, так и карбонатных отложениях от середины сандбийского времени до начала хирнанского. Найден на Урале [Мельников, 1999; Кориневский, Москаленко, 1988; Dubinina, Ryazantsev, 2008], в Казахстане, Горном Алтае, встречается в Канаде и Северной [McCracken and Nowlan, 1989; McCracken, 2000; Sweet, 2000] и Южной Америке [Ortega et al., 2008], Европе [Bergström, 1990], Австралии [Zhen, et al., 2003a; Trotter, Webby, 1994; Zhen et al., 1999; Fowler, Iwata, 1995], Китае [Wang, Zhou, 1998].

Материал. В кремнистых отложениях ержанской свиты (обр. TT07-2) бошкельской зоны около 100 экз. (56 Sc, 23 Sd, 10 Sa, 34 P и 4 ?Р элемента). Два Sb, один Sa, один M и один ?Р элемент найдены в кремнях кызылкаинской серии, р. Балга, Юго-Западное Предчингизье. В бестамакской свите (обр. 533а) чингикинской зоны 155 элементов.

Род Prioniodus Pander, 1856

1856 Prioniodus Pander, p. 29.

Типовой вид. Prioniodus elegans Pander, 1856; Ленинградская область, Россия, флосский ярус нижнего ордовика.

Диагноз. Семиэлементный аппарат включает пастинатные Pa и Pb элементы, макеллятный M, алятный Sa и квадрираматные Sb, Sc и Sd элементы.

Замечания. В Казахстане определены только два представителя рода Prioniodus — это Prioniodus honghuayuanensis и стратиграфически чуть более поздний вид P. elegans (табл. 10, фиг. 14, 17–22). Элементы последнего вида легко распознаются как непосредственно в породе, так и в выделяемых экземплярах по выраженной зубчатости на переднем отростке у M, Sa и Sb элементов. Отличает этот таксон также характерная форма Pa и Pb элементов и два зубчатых боковых отростка у Sd элементов. Основная коллекция этого вида представлена элементами из разрезов кемнинской буруйтайской свиты, но единичные экземпляры также были выделены из карбонатных отложений кенташской толщи.

Распространение. Представители рода встречаются повсеместно в нижнем ордовике.

Prioniodus honghuayuanensis Zhen, 2005

Табл. 11, фиг. 4, 7–10, 13–20; табл. 24, фиг. 19–20

2004 Prioniodus oepiki (McTavish): Tolmacheva et al., p. 711–713, figs. 8a–g, figs. 9a–о.
2005 Prioniodus honghuayuanensis Zhen et al., p. 312–318, figs. 6–8 (синонимика отсюда).
Диагноз. Семизлементный аппарат вида включает пастинатные Pa и Pb элементы с зубчатым задним и боковым отростком и незубчатым (или с рудиментарной зубчатостью) передним отростком, которые отвернуты на внутреннюю боковую сторону, макелятные M элементы с длинным передним и задним отростками, альтацовые Sa, модифицированные квадриратные Sb, Sс и Sd элементы. Все S элементы с наклонным зубцом, длинным зубчатым задним отростком, незубчатым передним и незубчатыми или зубчатыми боковыми отростками.

Замечания. Элементы P. honghuayuanensis в коллекции из Казахстана отличаются от других представителей этого рода тонкими длинными отростками с мелкой, часто неравномерной зубчатостью и зубчиками, развитыми, как правило, только на одном из боковых отростков у Sd и Sa элементов. Наличие группировок элементов, находящихся на разной онтогенетической стадии, позволило точно идентифицировать состав аппарата этого вида.

Местонахождение. Разрозненные элементы и группировки элементов встречены в нижней части флюсского яруса кремнистых разрезов гор Котнак, Баритовый карьер и Памятник природы бурый байтайльской свиты, а также в верхах ирадырской и ишкеольмесской свит в Северном Казахстане.

Материал. Более 100 разрозненных элементов и 5 группировок.

Род Protoprioniodus McTavish, 1973

Типовой вид. Protoprioniodus simplicissimus McTavish, 1973, свита Эмануэль (Emanuel), За- падная Австралия, нижний ордовик.

Замечания. Как было отмечено М. П. Смитом [Smith, 1991], а в дальнейшем Дж. Женом и др. [Zhen et al., 2003a], концепция аппарата этого рода с момента его установления претерпела сильные изменения. В последнем опубликованном анализе этого рода [Zhen et al., 2003a] было показано, что к нему отнесены формы с разным типом аппаратов. Одна группа с P. simplicissimus McTavish, 1973 (типовой вид) и P. yaiu Cooper, 1981 характеризуется пастинатным P элементом с грубым зубцом, похожим на P элементы рода P. oepiki. Это более крупная зубчатость на заднем отростке P элементов, а также отсутствие зубчатости на переднем отростке M элементов. Кроме того, у типового материала из Австрии зубчатость описана на всех трех отростках, включая передний, который у части экземпляров P. honghuayuanensis остается гладким. В то же время китайские формы полностью отвечают описанию и изображению P. honghuayuanensis из Южного Китая (платформа Янцы), за исключением того, что в нашей коллекции преобладают P элементы с гладким передним отростком. Однако полной уверенности в правильности идентификации китайских форм как P. honghuayuanensis нет, так как последний вид в Южном Китае встречается в мелководных условиях [Zhen et al., 2014], а в Казахстане он обнаружен в кремнистых глубоководных обстановках.

Распространение. Этот вид описан из относительно мелководных известняков свиты Хонгуяин (Honghuayuan) провинции Гуйчжоу (Guizhou) Южного Китая в интервале, коррелируемом с нижней частью зоны P. elegans Балтоскандийской конодонтовой шкалы [Zhen et al., 2005]. В кремнистых разрезах Казахстана P. honghuayuanensis появляется ниже первого появления P. elegans и исчезает в ее нижней части. На некоторых стратиграфических уровнях он доминирует в комплексах, составляя до 60% от общего количества элементов.

Распространение. Представители рода встречаются на всех континентах в нижнем и начале среднего ордовика.

Protoprioniodus papiliosus (van Wamel, 1974)

Табл. 9, фиг. 1–6, 12
1974 Oistodus papiliosus van Wamel, p. 76–77, pl. 1, figs. 18 (в ряду ли) 19–20.
1988 ‘Oistodus’ papiliosus van Wamel: Zhilkaidarov, fig. 2 (J, L).
1997 *Protoprioniodus papiliosus* (van Wamel): Bagnoli, Stouge, pl. 7, figs. 17–18 (M и Sa элементы).
2000 *Protoprioniodus papiliosus* (van Wamel): Johnston, Barnes, p. 42, pl. 6, figs. 18–21.

Диагноз. Небольшие конодонты, семиэлементный аппарат которых включает серию незубчатых S элементов с выростом на верхней поверхности заднего отростка, пару геникулятных Р элементов и геникулятные M элементы. Все элементы с выраженной базальной каймой; Sa элемент несет укороченный задний отросток (рис. 73).

Замечания. Вид *P. iaiiliosus* [van Wamel, 1974] практически идентичен виду *P. cowheadensis* Stouge et Bagnoli 1988, за исключением присутствия у последнего длинного, а не укороченного заднего стержня у Sa элементов [van Wamel, 1974; Bagnoli, Stouge, 1997] и, возможно, несколько другой морфологией M элементов. Состав аппарата *P. cowheadensis* установлен на основании достаточно большой коллекции элементов из разрезов Ньюфаундленда. Вероятность того, что там не были найдены укороченные Sa элементы, которые были обнаружены в относительно небольших коллекциях из типовой местности и в Казахстане, а также Канаде (Британская Колумбия), весьма невелика. Кроме того, в последних регионах не были найдены типичные M элементы, отнесенные к *P. cowheadensis*. Таким образом, на современном материале существование этих двух самостоятельных видов не подвергается большому сомнению.

Распространение. *P. papiliosus* встречается в разрезах Швеции (о. Эленд) в самых верхах флюсового яруса, в верхней части зоны *Microzarkodina russica*; согласно В. ван Вемелю [van Wamel, 1974], единичные элементы встречаются и в дапинском ярусе в зоне *Baltioniodus navis*. В Британской Колумбии *P. papiliosus* встречен в зоне *O. communis* верхней части флюсового яруса [Pyle, Barnes, 2002]. Этот вид был найден в ушкызыльской свите Юго-Западного Предчингизья (зона *Prioniodus elegans* [Zhylkaidarov, 1998]. Находки вида отмечаются и в нижнем-среднем ордовике Центральной Америки [Ethinton, Clark, 1982], однако характерные признаки вида здесь не упоминаются.

Местонахождение. Найден в ушкызыльской свите (20 м), Юго-Западное Прибалхашье, Южный Казахстан, зона *Prioniodus oepiki* флюсового яруса нижнего ордовика.

Материал. 14 элементов.

Род Scabbardella Orchard, 1980

1980 *Scabbardella Orchard*, p. 25.

Типовой вид. *Drepanodus altipes* Henningsmoen, 1948; Швеция, верхний ордовик.

Диагноз. Шестиэлементный аппарат включает конические высокие, уплощенные с боковых сторон элементы трех типов: дрепанодиформные, акодиформные и дистакодиформные, каждый из которых разделяется по степени изогнутости зубца и высоте основания.

Замечания. От сходного рода *Daisilodus* Cooper, 1976 отличается отсутствием тонкой полосчатости на переднем крае элементов и наличием элементов без ребер на боковых сторонах.

Распространение. Распространение этого монотипического рода соответствует распространению вида *Scabbardella altipes* (Henningsmoen, 1948).

Scabbardella altipes (Henningsmoen, 1948)

Табл. 25, фиг. 17, 18, 20–23

1948 *Drepanodus altipes* Henningsmoen, p. 420, pl. 25, fig. 14.
1966 *Acodus similis* Rhodes: Hamar, p. 48–50, pl. 2, figs. 3–9, 13, text-fig. 4 (5–10).
1980 *Scabbardella altipes* (Henningsmoen): Orchard, p. 25, pl. 5, figs. 2–5, 7, 8, 12, 20, 23, 24, 28, 30, 33, 35, text-fig. 4.
В изученных карбонатных местонахождениях было найдено несколько акодиформных (Sb) и дистакодиформных (Sd) элементов и один дрепанодиформный (Sc) элемент. Все они конические, с килевидным переходом в верхнюю часть основания, образуя семейство конодонтовых элементов, которые варьируют в своих характеристиках. Основное количество этих элементов встречается в нижнем ордовике Балтоскандии и кызылкаинской серии, а также в известняках бестамакской свиты (обр. ТТ07-2) у горы Семиз-Бугу в Балгалийской области, России, флоский ярус нижнего ордовика. Эти элементы имеют различное распространение, в том числе в Северной Америке, Китае, Аргентине и Австралии. Однако, они являются характерными для корректной идентификации видов, которые включаются в роды Scolopodus Pander, 1856; Oistodus Pander, 1856, с которыми связаны многие из исследований, представленные в данной работе.

Описание. Этот вид имеет космополитное распространение и встречается в том или ином количестве в разнофациальных отложениях верхнего ордовика (с середины сандбийского яруса) и нижнекатийских известняках кулундыской свиты (обр. Р10174) гор Тарбагатай, Восточный Казахстан.

Материал. 22 элемента.

Род Scolopodus Pander, 1856

Типовой вид. Scolopodus sublaevis Pander, 1856; Ленинградская область, Россия, флоский ярус нижнего ордовика.

Замечания. Концепция рода Scolopodus базируется на виде Scolopodus sublaevis Pander, 1856 (= Scolopodus striatus Pander, 1856), широко распространенном в нижнем ордовике Балтоскандинавии [Tolmacheva, 2006]. Сходные формы конодонтовых элементов встречаются во многих регионах, в том числе в Северной Америке, Китае, Аргентине, Австралии. Однако, их принадлежность к роду Scolopodus остается условной, поскольку для корректной идентификации необходима ревизия мультиэлементного состава аппарата, а это во многих случаях невозможно в связи с недостаточно большими коллекциями. Особенность этого вида заключается в геникулятном типе элементов, которые, в свою очередь, зависят от среды и условий ее пребывания.

Распространение. Представители рода встречаются практически повсеместно в нижнем и низах среднего ордовика.

Scolopodus cf. S. oistodiformis An et Ding, 1985

Табл. 12, фиг. 17–19, 23, 25, 26

Описание. Конические элементы с большим количеством ребер. Основание варьируется от низкого и округленного до высокого, плоско переходящего в длинный, слегка изогнутый зубец. Ребра не доходят до базального края основания, по
которому у части элементов проходит выпуклый базальный валик. Выделяются два типа элементов: конический негеникулятный и геникулятный, у которого основание отделяется от зубца резким перегибом. Среди негеникулятных форм большинство имеет округлое сечение и ребра, расположенные по всей поверхности элемента. У двух элементов (табл. 12, фиг. 19) задняя сторона элемента гладкая. Геникулятные элементы слегка выгнуты на внутреннюю сторону, несут несколько ребер на передней стороне и одно заднее ребро на зубце и основании. Основание у этих форм небольшое, округленное.

Местонахождение. Найден в верхнетремадокских известняках курдайской свиты (обр. Д-9066) западной части Киргизского хребта, Северная Киргизия.

Материал. 10 S и P, 2 M элемента.

Scolopodus sp.

Табл. 12, фиг. 20–22, 24

Описание. Элементы Scolopodus с относительно высоким основанием и ребром на его задней стороне и небольшим количеством ребер на боковых сторонах. У одного элемента присутствуют три ребра на внутренней стороне, тогда как внешняя сторона остается гладкой. Ребра у всех элементов не доходят до базального края основания, на котором нет выпуклого базального валика.
ответствует типам элементов этого рода. Кроме того, к признакам рода относятся гаилиновый состав элементов и орнаментация в виде ребер, тогда как элементы \emph{S.? mufushanensis} альбидные, а единственный желобок по своей глубине напоминает желобки у представителей рода \emph{Panderodus}. Предполагается, что такие желобки служат для подачи яда для фиксации жертвы при питании конодонтов [Szaniawski, 2009]. Скорее всего эти формы в дальнейшем, при наличии большего фактического материала, будут отнесены к самостоятельному роду.

Распространение. В Британской Колумбии несколько элементов найдено в зоне \emph{Jumudontus gananda} самой верхней части флоского яруса [Pyle, Barnes, 2002]. В Южном Китае встречается в верхней части флоского — нижней части дапинского яруса [An, 1987]. Местонахождение. Найден в найманской свите (обр. N-05/1) хр. Чингиз, Восточный Казахстан, и в узунбулакской свите (обр. 156) Чу-Илийских гор, Южный Казахстан.

Материал. 14 элементов.

Род \emph{Spinodus} Dzik, 1976

1913 \emph{Polygnathus} Hadding, p. 32.
1973 \emph{Cordyloodus} Pander, 1856, emend. Barnes, Poplawski, p. 771.
1976 \emph{Spinodus} Dzik, p. 424.
2009а \emph{Spinodus} Dzik, 1976: Zhen et al., p. 48.

Типовой вид. \emph{Polygnathus spinatus} Hadding, 1913; разрез Фагельсонг, Швеция, верхний ордовик.

Диагноз. Семиэлементный аппарат вида включает Па, Pb, Sa, Sc, Sb, Sd и M элементы с длинными отростками, несущими длинные зубчики округлого сечения.

Замечания. В настоящее время \emph{Spinodus} рассматривается как моновидовый род, но не исключено, что к нему может быть отнесен \emph{Spinodus sp.} из Новой Зеландии [Zhen et al., 2009e]. У этого вида зубчики на боковых отростках Sa и Sd элементов расположены более плотно и их больше, чем у \emph{S. spinatus} [Zhen et al., 2009e, pl. 11 С–H]. В составе \emph{Spinodus cf. S. spinatus} из разрезов Восточного Ньюфаундленда выделяются элементы с зубчиками на переднем отростке (e элементы) и развитые бипланетные логнагматические элементы (f элементы) [Johnston, Barnes, 2000], что не характерно для рода \emph{Spinodus}.

Распространение. Встречается практически повсеместно с флоского яруса нижнего по катийский ярус верхнего ордовика [Zhang, 1998].

Spinodus spinatus (Hadding, 1913)

Табл. 16, фиг. 12–17

1913 \emph{Polygnathus spinatus} Hadding, p. 32, pl. 1, fig. 8.
1913 \emph{Cordyloodus ramosus} Hadding, p. 31, pl. 1, fig. 6.
1973 \emph{Cordyloodus ramosus} Hadding: Barnes, Poplawski, p. 772, pl. 4, fig. 6.
1975 \emph{Cordyloodus spinatus} (Hadding): Наседкина, с. 123, табл. IV, фиг. 11.
1976 \emph{Spinodus spinatus} (Hadding): Dzik, p. 424, text-fig. 21с.
1984 \emph{Spinodus spinatus} (Hadding): Stouge, p. 89, pl. 18, figs. 17, 18.
1997 \emph{Spinodus spinatus} (Hadding): Armstrong, p. 791, pl. 4, figs. 8–11.
1998 \emph{Spinodus spinatus} (Hadding): Zhen, p. 91–93, pl. 17, figs. 11–14.
1998 \emph{Spinodus spinatus} (Hadding): Albanesi et al., p. 176–177, pl. 13, fig. 1–7, text-fig. 32.
1999 \emph{Spinodus spinatus} (Hadding): Wang, Bergström, p. 342–343, pl. II, fig. 17, pl. IV, fig. 8.
2009а \emph{Spinodus spinatus} (Hadding): Zhen et al., p. 157–158, figs. 8A, L–M.
20046 \emph{Spinodus sp. cf. spinatus} (Hadding): Zhen, Percival, p. 175, figs. 13 С–G.

Описание. Крупные рамиформные конодонты с большими редко расставленными зубчиками. Главный зубец примерно такого же размера, как и другие зубчики, базальная полость неглубокая. Элементы большей частью гаилиновые, верхушки элементов заполнены белым веществом. M элементы со слаженным передним углом, Sa элементы симметричные с боковыми отростками, несущими по одному крупному зубчику. Sc элементы с небольшим антизубцом. Sb с одним боковым отростком, на котором расположен один зубец; размеры зубца варьируют от совсем небольшого до крупного. Па элемент долаборатный, с базальным краем, доходящим до конца ангулиуса. Впинатный Pb элемент несет небольшой передний отросток. В элементах из нашей коллекции отросток практически не отклоняется в боковую сторону и сходен с Pb элементами, изображенными в работах Ж. Жан [Zhang, 1998: pl. 17, fig. 14] и С. Стуге [Stouge, 1984: pl. 18, fig. 17]. Задний стержень у Pb элемента более загнут вниз, чем у S элементов. Sd элементы асимметричные, тертипедатные с боковыми отростками, на каждом из которых находится по одному зубцу, которые могут быть разного размера. Задний стержень сильно отклоняется в одну из боковых сторон. Sa элемент более уплощен с боковых сторон, чем Sa элемент.

Замечания. В нашей коллекции элементы \emph{S. spinatus} относительно многочисленны и име-
ют хорошую сохранность. В одном из последних детальных описаний вида [Zhen et al., 2009a] были суммированы данные о его аппарате, в состав которого в настоящее время включено шесть морфотипов элементов (Pa, Pb, Sa, Sc, Sb и M). В целом, наш материал подтверждает такой состав аппарата, но в дополнение к нему мы выделяем несимметричные тертиопедальные формы, которые рассматриваются как Sd элементы. Таким образом, аппарат вида принимается как семи-элементный.

Отмечается, что задний стержень у древних форм S. spinatus несет относительно большое количество зубчиков (2–3 зубчика). У эволюционно более молодых форм только Sa элемент имеет задний стержень с несколькими зубчиками, тогда как на заднем стержне у всех остальных элементов расположен один зубчик [Zhen et al., 1999].

Местонахождение. Таасбулакская свита (обр. Д-10063а), Джунгарский Алатау, Восточный Казахстан и найманская свита (обр. N-05/1), хр. Чингиз, Восточный Казахстан и найманская свита (обр. N-05/1), ДJuniorский Алатау, Восточный Казахстан и найманская свита (обр. N-05/1), ДЖункарский Алатау, Восточный Казахстан, дарривильский ярус среднего ордовика.

Материал. 86 элементов.

Spinodus sp.

Табл. 30, фиг. 19, 20

Замечания. Элементы с длинным задним отростком и крупными, широко расставленными и округлыми в сечении зубчиками могут быть отнесены к роду Spinodus. Отличаются от вида S. spinatus присутствием заднего и переднего киелей на зубчиках, а также двумя зубчиками на боковом стержне. По этим признакам они очень похожи на элементы Spinodus sp., найденные в Новой Зеландии [Zhen, Percival, 2009]. Элемент с двумя зубчиками на переднем крае (табл. 30, фиг. 19), возможно, тоже относится к этому виду. Представляет собой или Sc элемент с зубчатым передним краем, либо деформированный Sb элемент.

Местонахождение. Известны в [обр. 2033] каркаанской свите, Карачанский увал, Северная Бетпак-Дала и тасбулакская свита (обр. Д-10063а), Джунгарский Алатау, Восточный Казахстан, дарривильский ярус среднего ордовика.

Материал. 1 Sc? и 2 Sb элемента.

Род Triangulodus van Wamel, 1974

1974 Triangulodus van Wamel, p. 96.
1987 Pteracontiodus Harris et Harris, 1965: Bauer, p. 27.

Типовой вид. Scandodus brevibasis (Sergeeva, 1963) emend. Lindstrom (1971); Ленинградская область, Россия, волховский григорий, дапинский ярус, средний ордовик.

Диагноз. Конодонты с семиэлементным аппаратом, включающая скандодиформные Р элементы, геникулятные М элементы и серию S элементов с высокими килями или незубчатыми отростками. Все элементы крупные, гиалинового состава.

Багноли, 1990; Зжен и др., 2006]. Последние рассматриваются как филогенетическая линия, возникшая и развивающаяся в Лаврентии, а центром появления и расселения *Triangulodus*, в том числе и в Балтоскандине, считаются Австралия и Китай [Stouge, Bagnoli, 1990].

Triangulodus sp. A
Табл. 29, фиг. 1–7

Описание. Крупные гиалиновые элементы с незубчатыми отростками. Обнаружено всего пять типов элементов: Р, М, Sc, Sd и Sa. Р элементы ангулятного облика характеризуются широким наклоненным зубцом, низким основанием и удлиненными невысокими передним и задним отростками с заостренным верхним краем. Для Sc элемента характерно высокое основание, гладкие боковые стороны и килеватые передний и задний края. Для Sd элемента длинные боковые отростки, направлены вниз и немного заходят за базальный край. М элементы геникулятные, с наклоненным зубцом и относительно небольшим, невысоким основанием. Задний и передний отростки относительно короткие, с заостренными дистальными краями примерно одной длины. Базальный край элемента выпуклый, максимальный выступ отмечает центральную часть базальной полости.

Замечания. Все элементы аппарата *Triangulodus* sp. A не найдены, в связи с чем данный таксон может быть описан только в открытой номенклатуре.

Местонахождение. В обр. Д-11130 известняков вулканогенной толщи Урумбайского района, Северный Казахстан.

Материал. 4 Р, 3 М, 1 Sa, 3 Sc и 2 Sd элемента.

Gen. indet. sp. 1
Табл. 30, фиг. 1–4

Описание. Небольшие конические, уплощенные с боков элементы с высоким основанием, плавно переходящим в небольшой зубец. Передний и задний края основания и зубца килеобразные, боковые стороны гладкие, слегка выпуклые. Микроорнаментация на поверхности элемента отсутствует. На обеих боковых сторонах варьирует длина зубца состояла из небольшой части, в которую входят элементы (табл. 30, фиг. 4).

Местонахождение. В разрезе Баритовый карьер бурбайтальской свиты (обр. 286, 30), Юго-Западное Прибалхашье, Южный Казахстан.

Материал. 8 элементов.
ЗАКЛЮЧЕНИЕ

В работе на основе комплексного анализа ранее малоизученной конодонтовой фауны палеозой Центрально-Азиатского пояса (Казахстан, Северная Киргизия) впервые осуществлено детальное биостратиграфическое расчленение ордовикских отложений. Для глубоководных отложений палеозой Казахстана разработана провинциальная зональная шкала из 13 подразделений в ранге зон; для мелководноморских отложений — провинциальная биостратиграфическая шкала из 11 слоев с фауной. Конодонтовая шкала глубоководных отложений, разработанная по кремнистым отложениям Казахстана, дает возможность широкой корреляции глубоководных отложений окраин всех палеоконтинентов, включая окраины Сибирской платформы (напр., о. Беннетта, Таймыр).

До работ автора о конодонтах ордовика Казахстана было известно мало. Данные по этой фауне из карбонатных пород палеозой Казахстана и Северной Киргизии получены впервые. Принципиально расширены представления о глубоководных конодонтах из кремнистых отложений Казахстана. Установлено, что таксономическое альфа-разнообразие конодонтовых фаун колеблется от 37 до 1 вида, при этом оптимальными для возникновения разнообразного сообщества являются относительно глубоководные обстановки островодужных поднятий в приэкваториальной зоне. Впервые показано, что таксономическое разнообразие мелководноморских конодонтовых фаун незначительно превышает разнообразие открытоморских пелагических фаун, изученных в кремнистых отложениях Казахстана.

Разработано биогеографическое районирование западной части Центрально-Азиатского складчатого пояса по конодонтам. Выделение провинций основано на современных представлениях об иерархии биогеографических подразделений по конодонтам в ордовикском периоде [Zhen, Percival, 2003], во главу которых ставится разделение конодонтовых фаун на фауны океанической (глубоководной) и мелководноморской биогеографических областей. Изучение конодонтов из кремнистых пелагических отложений палеозой Казахстана позволило впервые типизировать океаническую область таксономически разнообразной фауной широкого географического распространения, виды которой встречаются в окраинных фашиях всех известных палеоконтинентов. В океанической области по конодонтам определена климатическая зональность с выделением приэкваториальной и умеренно-тепловой водной зон. Типизация океанических видов позволила разграничить биофашиальные и биогеографические особенности комплексов конодонтов при предложенном районировании относительно мелководноморских фаун Казахстана и Северной Киргизии, в котором учитывалось распространение только мелководноморских форм.

Анализ конодонтовых комплексов из карбонатных отложений Казахстана, Северной Киргизии и Горного Алтая выявил их общее сходство с фауной Австрало-Азиатской биогеографической надпровинции [Webby et al., 2000], объединяющей находящиеся в разных климатических зонах австралийскую часть Гондваны, Тарим, Чжубасу, Северный и Южный Китай. От одновозрастных мелководных фаун Восточно-Европейской и Сибирской платформы конодонты запада Центрально-Азиатского складчатого пояса (за исключением Урала) отличаются принципиально другим набором видов, хотя с этими регионами и зафиксированы общие единичные таксоны. Значительное количество региональных экзотиков нижнего и среднего ордовика позволяет определять территорию Казахстана, Северной Киргизии и Алтая в это время как отдельную Западно-Азиатскую провинцию. Какие-либо биогеографические различия конодонтовых фаун Казахстана и Северной Киргизии не выявлены; разница в составе конодонтовых комплексов внутри этих регионов незначительна и определяется фашиями и разными объемами коллекций. Конодонты среднего ордовика Горного Алтая могут рассматриваться как отдельный биогеографический район Западно-Азиатской провинции.
Обоснованы современные представления об экстремально теплых климатических условиях в позднем кембрии и раннем ордовике и постепенном похолодании к хирнантскому веку [Trotter et al., 2008]. На основании сохранности конодонтов и строения глубоководных отложений показано, что позднекембрийские и раннеордовикские тепловодные океанические бассейны характеризовались пониженной циркуляцией водных масс и широким развитием бескислородных обстановок. Это же время отмечалось слабовыраженным градиентом в гамма-разнообразии конодонтовых фаун от высоких к низким широтам, общим высоким уровнем альфа-разнообразия на всех палеоширотах и низким по сравнению с последующими этапами ордовика содержанием эндемичных форм. Насыщение кислородом донных вод, связанное с установлением циркуляционной системы и похолоданием, началось в ранней трети флоского яруса (зона Prioniodus elegans). Выяснилось, что это случилось значительно раньше, чем предполагалось, на основании изучения литологических особенностей и фауны мелководных отложений. Начавшаяся термогалинная циркуляция сопровождалась общим снижением температур и увеличением градиента температур между полюсами и экватором. Это привело в среднем ордовике к резкому увеличению меридионарного градиента гамма-разнообразия, выражающегося в повышении биоразнообразия конодонтов в низких широтах.

Впервые обосновано предположение, что некоторые пелагические ордовикские конодонты были плотоядными организмами, питаясь мелкими членистоногими и конодонтовой молодью других видов. Планктонный образ жизни конодонтов и способ их питания следуют из анализа фекальных пеллет, обнаруженных в отложениях, морфологии тела конодонтов и их аналогии с современными хетогнатами, которые, будучи планктонными формами, способны к хищничеству и относительно активным перемещениям в толще воды. Конодонты, вероятно, включались в сложные пищевые цепочки с селективным выведением популяций по размеру (= возрасту) особей. Для конодонтов предполагается сложная жизненная стратегия, что следует из возможностей хищников, питающихся конодонтами, проводить отбор особей по возрасту и биологическому виду.
Л И Т Е Р А Т У Р А

Лубинина С.В., Орлов А.Р., Курковская Л.А. Последовательность конодонтовых и гранитолитовых комплексов в терригенных отложениях нижнего-среднего ордовика Ишим-Каратайской структурно-фациальной зоны Казахстана (на примере разрезов Байконур и Сарысай) // Бюл. МОИП. Отд. Геол. — 1996б. — Т. 71. — Вып. 2. — С. 64–75.

Келлер Б.М. Общий обзор стратиграфии ордовика Чу-Илийских гор // Ордовик Казахстана. Т. II. — 1956б. — С. 5–49. — (Труды ГИН АН СССР; вып. 1).

Никитин И.Ф., Никитина О.И., Попов Л.Е., Толмачева Т.Ю. Результаты деятельности международной подко-

Никина О.И., Никин Н.Ф., Толмачева Т.Ю., Корень Т.Н. Ордовикская систем. Сибирская система // Атлас опорных стратиграфических разрезов фанерозоя Казахстана. – Алматы, 2008а. – С. 55–98.

Новый представитель конодонтов из среднего ордовика Центрального Казахстана, Киргизии и Таджикистана // Труды ГИАН АН СССР. – Вып. 305. – 1977.—171 с.

Furey-Greig T.M. Late Ordovician conodonts from the olistostromal Wiseman’s Arm Formation, New England region, Australia // Abhandlungen Geologische Bundesanstalt. – 1999. – Vol. 54. – P. 303–322.

Fährhues L.E. Lower Viruan (Middle Ordovician) conodonts from the Gullhögö Quarry, Southern Central Sweden // Sveriges Geol. Undersök. – 1966. – Pt. 610. – P. 1–40.

Fährhues L.E., Nowlan G.S. Franconian (Late Cambrian) to Early Champlainian (Middle Ordovician) conodonts from the Cow Head Group, western Newfoundland // J. Paleont. – 1978. – Vol. 52. – P. 444–471.

Jeppsson L. Element arrangement in conodont apparatuses of Hindeodella type and in similar forms // Lethaia. – 1971. – Vol. 4. – P. 101–123.

Johnston D.I., Barnes C.R. Early and Middle Ordovician (Arenig) conodonts from St. Pauls Inlet and Martin Point, Cow Head Group, Western Newfoundland, Canada // Geol. et Palaeont. – 1999. – Vol. 33. – P. 21–70.

Kasting J.F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater // J.F. Kasting, M.T. Ho-

Leslie S.A. Apparatus architecture of Belodina (Conodont) // Interprétations basé sur des fusions de Belodina compressa (Branson and Mehl, 1933) from the Middle Ordovician (Turinian) Plattin Limestone of Missouri and Iowa // J. Paleont. – 1997. – Vol. 71. – P. 921–926.

Nikitin I.F. et al. The Lower-Middle Ordovician boundary in Kazakhstan / I.F. Nikitin, T.N. Koren’, O.I. Nikitina, L.E. Popov, A.M. Zhilkaidarov // Ordovician from the An-

Popov L.E., Nikitin I.F., Sokirak E.V. The Earliest Atypides and Athyridides (Brachiopoda) from the Ordovician of Kazakhstan // Palaeontol. – 1999. – Vol. 42. – Pt. 4. – P. 625–661.

Popov L.E., Nikitin I.F., Cock L.R.M. Late Ordovician Brachiopods from the Otar member of the Chu-Ili Range, South Kazakhstan // Palaeontol. – 2000. – Vol. 43. – Pt. 5. – P. 833–870.

Stouge S. Conodonts of the Middle Ordovician Table Head Formation, western Newfoundland // Fossils and Strata. – 1984. – Vol. 16. – P. 1–145.

Tolmacheva T.Yu. Conodont biostratigraphy and diversity in the Lower-Middle Ordovician of Eastern Baltoscandia (St. Petersburg Region, Russia) and Kazakhstan / Thesis of PhD studies. – Uppsala University, 2001. – 1176 p.

Vandenbroucke T.R.A. et al. Epipelagic chitinozoan biotopes map a steep latitudinal temperature gradient for earliest Late Ordovician seas: Implications for a cooling Late Ordo-

Zhen Y.Y., Percival I.G. Middle Ordovician (Darriwilian) conodonts from allochthonous limestones in the Oakdale Formation of central New South Wales, Australia // Alcheringa. – 2004а. – Vol. 28. – P. 77–111.

Zhen Y.Y., Pickett J.W. Ordovician (Early Darriwilian) conodonts and sponges from west of Parkes, central New South Wales // Proceed. of the Linnean Soc. of New South Wales. – 2008. – Vol. 129. – P. 57–82.

Zhen Y.Y., Percival I.G., Webby B.D. Conodont faunas from the Mid to Late Ordovician boundary interval of the Wahringa Limestone Member (Fairbridge Volcanics), central New South Wales // Proceed. of the Linnean Soc. of New South Wales. – 2004. – Vol. 125. – P. 141–164.

Приложения
Распределение конодонтов в изученных разрезах и местонахождениях

Таблица 1

<table>
<thead>
<tr>
<th>Конодонты</th>
<th>Бурубайтальская свита Баритовый карьер</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordyloides angulatus</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Parnoistodus arcuatus</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Paroistodus gracilis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Acododus longibasis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scilopodas sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ledonodas gracilis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Paroistodus horridus</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Olandodas gogradus</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Cordyloides longibasis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Paroistodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Acododus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>ABergsrtoemogantus extensus</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Costoconus costatus</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Kallidontus corbatoi</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Lundodas elegans</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Ponotodus honghuayuanensis</td>
<td>+ + + + + + + + + + +</td>
</tr>
<tr>
<td>Scolopodus sp.</td>
<td>+ + + + + + + + + + +</td>
</tr>
</tbody>
</table>
Таблица 2
Распределение конодонтов в разрезе бурубайтальской свиты Памятник природы — 89101

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Параконодонты</td>
<td></td>
</tr>
<tr>
<td>56.67</td>
<td></td>
</tr>
<tr>
<td>54.15</td>
<td></td>
</tr>
<tr>
<td>44.75</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>27.72</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>10.94</td>
<td></td>
</tr>
<tr>
<td>8.25</td>
<td></td>
</tr>
<tr>
<td>6.06</td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td></td>
</tr>
</tbody>
</table>
Распределение конодонтов в разрезе бурубайтальской свиты Памятник природы — 9706

<table>
<thead>
<tr>
<th>Конодонты</th>
<th>Простые конические элементы</th>
<th>Шиповидные конусы</th>
<th>Спиральные конусы</th>
<th>Основание</th>
<th>Радиальные</th>
<th>Латеральные</th>
<th>Радиально-латеральные</th>
<th>Остальные</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>54</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>52</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>45.4</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>41.2</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>40.5</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>33.3</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>32</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>27.5</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>25.1</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>20.3</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>19.1</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>16.6</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>14.8</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>10.7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>1.5</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>0.7</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>0.3</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>-6</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>-10</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>-18</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>-40</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Распределение конодонтов в разрезе бурубайтальской свиты Раковая горка

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>73-3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69-3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>69-2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>69-1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>73-1a</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>73-2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>73-2a</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>73-1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Распределение конодонтов в разрезе бурубайтальской свиты гор Котнак

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O5130</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5130-x</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5132</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5131-6</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5131-x</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5132-1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5131</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>O5133</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>P1073</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T10-7 P572-3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T10-6 P572-2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T10-5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T10-4</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T10-3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>T10-1</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 6
Распределение конодонтов в разрезе кушкинской свиты Голубая гряда

| 35-4 | 35 | 35-a | 34-1 | 33 | 32 | 31 | 30-1 | 30 | 29 | 28 | 27 | 25-3 | 25-1 | 25 | 20-4.8 | 17-3 | 17a | 17-1 | 17 | 15-1 | 15b |
|------|----|------|------|----|----|----|------|----|----|----|----|------|------|----|-----|------|----|----|----|----|
| | | | | | | | | | | | | | | | | | | | | |
Распределение конодонтов в ирадырской и ишкеольмесской свитах Восточно-Ишкеольмского района

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120a</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Распределение конодонтов в разрезе ержанской свиты

<table>
<thead>
<tr>
<th>Горы Коянды</th>
<th>Горы Семизбугу</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-2</td>
<td>07-14</td>
</tr>
<tr>
<td>7120</td>
<td>07-13</td>
</tr>
<tr>
<td>07-4</td>
<td>07-11</td>
</tr>
<tr>
<td>07-3</td>
<td>07-12</td>
</tr>
<tr>
<td>7118</td>
<td>07-10</td>
</tr>
<tr>
<td>7117</td>
<td>07-9</td>
</tr>
<tr>
<td></td>
<td>07-8</td>
</tr>
<tr>
<td></td>
<td>07-7</td>
</tr>
</tbody>
</table>

Количество элементов и их соотношение
в известняках вулканогенной толщи (обр. 11130) Урумбайского района, Северный Казахстан

<table>
<thead>
<tr>
<th>Кол-во элементов</th>
<th>Соотношение элементов в пробе (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histiodella? levis</td>
<td>55</td>
</tr>
<tr>
<td>Parapanderodus striatus</td>
<td>16</td>
</tr>
<tr>
<td>Triangulodus sp. A</td>
<td>15</td>
</tr>
<tr>
<td>Periodon macrodentatus</td>
<td>13</td>
</tr>
<tr>
<td>Juanognathus jaanussoni</td>
<td>13</td>
</tr>
<tr>
<td>Drepanostodus sp.</td>
<td>9</td>
</tr>
<tr>
<td>Histiodella cf. H. altifrons</td>
<td>8</td>
</tr>
<tr>
<td>Nannognathus degtyarevi</td>
<td>7</td>
</tr>
<tr>
<td>Juanognathus sp. I</td>
<td>7</td>
</tr>
<tr>
<td>Protopanderodus? nogami</td>
<td>5</td>
</tr>
<tr>
<td>Protopanderodus sp.</td>
<td>2</td>
</tr>
<tr>
<td>Appalachignathus sp.</td>
<td>1</td>
</tr>
<tr>
<td>Gen et sp. indet A</td>
<td>1</td>
</tr>
</tbody>
</table>

Всего: 152
ФОТОТАБЛИЦЫ С КОНОДОНТАМИ И ДРУГОЙ ФАУНОЙ
И ОБЪЯСНЕНИЯ К НИМ

ТАБЛИЦА 1

Фиг. 1 — Loxodus sp.; терригенно-карбонатная толща на р. Кольденен, хр. Чингиз (обр. Д10-138), № TT 2/1, фрагмент элемента, ×180.

Фиг. 2–5 — Hirsutodontus sp.; терригенно-карбонатная толща на р. Кольденен, хр. Чингиз (обр. Д10-138): 2 — № TT 2/1, ×190; 3 — № TT 3/1, ×200; 4 — № TT 4/1, ×180; 5 — № TT 5/1, ×230.

Фиг. 6, 10, 11 — Cordylodus proavus Müller, 1959: 6 — № TT 6/1, бурубайтальская свита, разрез гор Котнак (обр. TT10-7), ×77; 10 — СМ 12/13174, кремнисто-карбонатная толща гор Зербкызыл, хр. Чингиз (обр. ZK01-2), ×84; 11 — № TT 7/1, бурубайтальская свита, разрез гор Котнак (обр. TT10-7), ×98.

Фиг. 7 — Teridontus sp. (Nogami, 1967); бурубайтальская свита, разрез гор Котнак (обр. TT10-7), № TT 8/1, ×88.

Фиг. 8, 9 — Eoconodontus notchpeakensis (Miller, 1969); бурубайтальская свита, разрез гор Котнак (обр. TT10-7): 8 — M элемент, № TT 9/1, ×90; 9 — Sc элемент, № 26/13184, ×80.

Фиг. 12–15 — Phakelodus cf. Ph. elongatus (An) (отличается от Phakelodus elongatus (An) более широкими элементами); терригенно-карбонатная толща на р. Кольденен, хр. Чингиз (обр. Д10-138): 12 — кластер более чем из 15 элементов, № TT 10/1, ×70; 13 — кластер из двух элементов, № TT 11/1, ×130; 14 — № TT 12/1, ×190; 15 — кластер из восьми? элементов, № TT 13/1, ×75.

Фиг. 16–18 — Rossodus manitouensis Repetski et Ethington, 1983, кремнисто-карбонатная толща гор Зербкызыл, хр. Чингиз (обр. ZK01-2): 16 — Sb элемент, СМ 38/13174, вид сзади, ×75; 17 — Sa элемент, № TT 14/1, вид сзади, ×85; 18 — M элемент, СМ 37/13174, ×80.

Фиг. 19, 20 — Cordylodus angulatus Pander, 1856; ишкеольмесская свита (обр. 96): 19 — P элемент, № 19/13184, ×62; 20 — Sc элемент, № 18/13184, ×69.
Таблица 1
ТАБЛИЦА 2

Фиг. 1–21 — Colaptoconus sp.; агалатасская свита (обр. 556, 556а): 1 — S элемент, № ТТ 1/2, ×50; 2 — S элемент, № ТТ 2/2, ×60; 3 — S элемент, № ТТ 3/2, ×52; 4 — S элемент, № ТТ 4/2, ×59; 5 — Sa элемент, № ТТ 5/2, вид снизу, ×75; 6 — Sa элемент, № ТТ 6/2, ×83; 7 — S элемент, № ТТ 7/2, ×49; 8 — S элемент, № ТТ 8/2, ×45; 9 — S элемент, № ТТ 9/2, ×59; 10 — S элемент, № ТТ 10/2, ×50; 11 — S элемент, № ТТ 11/2, ×61; 12 — S элемент, № ТТ 12/2, ×54; 13 — S элемент, № ТТ 13/2, вид сверху, ×100; 14 — Sa элемент, № ТТ 14/2, вид сзади, ×90; 15 — Sa элемент, № ТТ 15/2, ×95; 16 — S элемент, № ТТ 16/2, ×87; 17 — S элемент, № ТТ 17/2, ×66; 18 — S элемент, № ТТ 18/2, ×45; 19 — S элемент, № ТТ 19/2, ×65; 20 — S элемент, № ТТ 20/2, вид сверху, ×117; 21 — S элемент, № ТТ 21/2, вид сверху, ×120.
Таблица 2
ТАБЛИЦА 3

ТАБЛИЦА 4

ТАБЛИЦА 5

Фиг. 1–17 — Acodus? chingizicus Tolmacheva sp. nov.; маматская свита (обр. 225):
1 — P элемент, № ТТ 1/5, ×71; 2 — P элемент, № ТТ 2/5, ×71; 3 — P элемент, № ТТ 3/5, вид сверху, ×78; 4 — Sb, элемент, № ТТ 4/5, ×65; 5 — Sb, элемент, № ТТ 5/5, ×77; 6 — Sb, элемент, № ТТ 6/5, вид сверху, ×78; 7 — Sd, элемент, № ТТ 7/5, ×69; 8 — Sd, элемент, № ТТ 8/5, вид сверху, ×70; 9 — Sd, элемент, № ТТ 9/5, вид сверху, ×80; 10 — Sd, элемент, № ТТ 10/5, ×68; 11 — M элемент, № ТТ 11/5, ×88; 12 — Sd, элемент, № ТТ 12/5, ×78; 13 — Sb, элемент, № ТТ 13/5, ×84; 14 — Sb, элемент, № ТТ 14/5, ×81; 15 — Sb, элемент, № ТТ 15/5, ×82; 16 — Sc элемент, № ТТ 16/5, ×79; 17 — Sb, элемент, № ТТ 17/5, ×63.

Фиг. 18 — Colaptoconus sp. 1 (элементы гиалинового состава, ребра присутствуют на обеих боковых сторонах элемента); агалатасская свита (обр. 72а), № ТТ 18/5, ×90.

Фиг. 20, 21 — Lenaeodus cf. L. bifidus (Abaimova, 1971); маматская свита (обр. 223):
20 — № ТТ 19/5, вид сзади, ×79; 21 — № ТТ 19/5, вид сзади и сверху, ×79.

Фиг. 22 — Ulrichodina sp.; агалатасская свита (обр. 72а), № ТТ 20/5, ×120.

Фиг. 19, 23, 24 — Scolopodus? sp., асимметричные элементы: 19 — № ТТ 21/5, ×98; 23 — № ТТ 22/5, ×115; 24 — № ТТ 23/5, ×102.
ТАБЛИЦА 6

Фиг. 1—4 — Colaptoconus bolites (Rapetski, 1982) (элементы гиалинового состава); агалатасская свита (обр. 72б): 1 — Sa элемент, № ТТ 1/6, ×130; 2 — S элемент, № ТТ 2/6, ×118; 3 — Sa элемент, № ТТ 3/6, ×107; 4 — S элемент, № ТТ 4/6, ×98.

Фиг. 5—11 — Colaptoconus sp. 2 (элементы гиалинового состава); агалатасская свита (обр. 556, 556а): 5 — S элемент, № ТТ 5/6, ×190; 6 — S элемент, № ТТ 6/6, ×220; 7 — Sa элемент, № ТТ 7/6, ×229; 8 — S элемент, № ТТ 8/6, ×260; 9 — S элемент, № ТТ 9/6, ×250; 10 — Sa элемент, № ТТ 10/6, ×190; 11 — S элемент, № ТТ 11/6, ×150.

Фиг. 12, 13, 14, 15, 17, 23 — Drepanoistodus sp., агалатасская свита (обр. 556, 556а): 12 — Sa элемент, № ТТ 12/6, ×78; 13 — М элемент, № ТТ 13/6, ×71; 14 — М элемент, № ТТ 14/6, ×77; 15 — S элемент, № ТТ 15/6, ×65; 17 — S элемент, № ТТ 16/6, ×80; 23 — S элемент, № ТТ 17/6, ×82.

Фиг. 16, 18, 19, 20, 21 — Paltodus cf. P. pristinus (Viira, 1970); агалатасская свита (обр. 556, 556а): 16 — Sa элемент, № ТТ 18/6, ×69; 18 — S элемент, № ТТ 19/6, ×60; 19 — S элемент, № ТТ 20/6, ×100; 20 — M элемент, № ТТ 21/6, ×80; 21 — M элемент, № ТТ 22/6, ×82.

Фиг. 22 — Rossodus sp., агалатасская свита (обр. 72б), M элемент, № ТТ 23/6, ×150.
ТАБЛИЦА 7

Фиг. 1—13, 17 — Cruxodus tretiakovi Tolmacheva sp. nov.; кенташская толща (обр. Д9066):
1 — S элемент, № ТТ 21/6, ×90; 2 — S элемент, вид сзади, № ТТ 1/7, ×90; 3 — S элемент, вид сзади, № ТТ 2/7, ×84; 4 — S элемент, № ТТ 3/7, ×80; 5 — S элемент, № ТТ 4/7, ×85; 6 — верхняя часть зубца экземпляра S элемент, № ТТ 2/7, ×272; 7 — вид снизу экземпляра № ТТ 3/7, ×289; 8 — P элемент, № ТТ 5/7, ×84; 9 — P элемент, № ТТ 6/7, ×76; 10 — P элемент, № ТТ 7/7, ×75; 11 — P элемент, № ТТ 7/7, ×72; 12 — P элемент, № ТТ 8/7, ×80; 13 — P элемент, вид снизу, № ТТ 9/6, ×150; 17 — детали строения вершины зубца экземпляра № ТТ 7/7, фиг. 11, ×230.

Фиг. 14—16, 18–21 — Bergstromognathus extensus (Graves et Ellison, 1941): 14 — M элемент, № ТТ 9/7, вид сзади, каратальская свита, ×83; 16 — ? M элемент, № ТТ 10/7, вид сзади, каратальская свита, ×57; 18 — Sb элемент, № ТТ 11/7, внутренняя сторона, кенташская толща (обр. Д9066), ×47; 19 — Sb элемент, № ТТ 11/7, внешняя сторона, кенташская толща (обр. Д9066), ×47; 20 — ? Pb элемент, № ТТ 12/7, бурубайтальская свита, разрез Баритовый карьер (обр. 28б), ×65; 21 — Pb элемент, № ТТ 13/7, кенташская толща (обр. Д9066), ×45.

Фиг. 22, 23 — Cornuodus longibasis (Lindström, 1955); бурубайтальская свита, разрез Баритовый карьер (обр. 28б): 22 — № ТТ 14/7, ×78; 23 — № ТТ 15/7, ×66.
<table>
<thead>
<tr>
<th>Фиг.</th>
<th>Описание</th>
<th>Комментарии</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–9, 12, 13, 17, 18, 22, 24</td>
<td>Kallidontus corbatoi (Serpagli, 1974); 7 – S элемент, № TT 8/8, урбайтальская свита, разрез Раковая горка (обр. P10069), ×67; 8 – P элемент, № TT 9/8, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×76; 9 – P элемент, № TT 10/8, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×50; 12 – S элемент, № TT 11/8, кенташская толща (обр. Д9066), ×62; 13 – P элемент, нижняя сторона элемента № TT 9/8 (фиг. 8), ×75; 17 – S элемент, № TT 12/8, бурубайтальская свита, разрез Баритовый карьер (обр. 28б), вид сзади, ×120; 18 – S элемент, № TT 13/8, бурубайтальская свита, разрез Баритовый карьер (обр. 28б), вид сзади, ×167; 22 – увеличенный фрагмент элемента № TT 6/8, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×500; 24 – P элемент, № TT 14/8, кенташская толща (обр. Д9066), ×69.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Coelocerodontus? sp., бестамакская свита (обр. 533а), № TT 15/8, ×53.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Loxodus sp., № TT 22/8, фрагмент элемента, узунбулакская свита, ×66.</td>
<td></td>
</tr>
</tbody>
</table>
ТАБЛИЦА 9

Фиг. 1—6, 12 — Protoprioniodus papillosus (van Wamel, 1974); бурубайтальская свита, разрез Баритовый карьер (обр. 20 м): 1 — S элемент, № ТТ 1/9, ×67; 2 — S элемент, № ТТ 2/9, ×69; 3 — P элемент, № ТТ 3/9, ×67; 4 — P элемент, № ТТ 4/9, ×72; 5 — S элемент, № ТТ 5/9, ×79; 6 — Sa элемент, № ТТ 6/9, вид сзади и сбоку, ×66; 12 — Sa элемент, № ТТ 6/9, вид сзади, ×75.

Фиг. 7–11, 14–16 — Chiganodus parilis Tolmacheva sp. nov.; бурубайтальская свита, разрез гор Котнак (обр. О5133): 7 — P элемент, № ТТ 7/9, ×72; 8 — P элемент, № ТТ 8/9, ×78; 9 — S элемент, № ТТ 9/9, ×71; 10 — S элемент, № ТТ 10/9, ×77; 11 — S элемент, № ТТ 11/9, ×69; 14 — M? элемент, № ТТ 12/9, ×68; 15 — S элемент, № ТТ 13/9, ×70; 16 — 15 — S элемент, № ТТ 14/9, ×67.

Фиг. 13, 17–26 — Oelandodus elongatus (Lindström, 1955); бурубайтальская свита, разрез гор Котнак (обр. О5131): 13 — S элемент, № ТТ 15/9, ×72; 17 — M элемент, № ТТ 16/9, ×94; 18 — S элемент, № ТТ 17/9, ×67; 19 — M элемент, № ТТ 18/9, ×80; 20 — S элемент, № ТТ 19/9, ×67; 21 — M элемент, № ТТ 20/9, ×82; 22 — S элемент, № ТТ 21/9, ×63; 23 — S элемент, № ТТ 22/9, ×64; 24 — S элемент, № ТТ 23/9, ×67; 25 — P? элемент, № ТТ 24/9, ×72; 26 — P? элемент, № ТТ 25/9, ×65.
Фиг. 1—9, 11, 12, 15, 16 — *Oepikodus evae* (Lindström, 1955): 1 — Pb элемент, № TT 1/10, вид сверху, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×80; 2 — Sd элемент, бурубайтальская свита, разрез Раковая горка (обр. P10069), № TT 2/10, ×79; 3 — M элемент, № TT 3/10, бурубайтальская свита, разрез Баритовый карьер (обр. 27 м), ×68; 4 — Sa? элемент, № TT 4/10, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×84; 5 — Pb элемент, № TT 5/10, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×69; 6 — Pa элемент, № TT 6/10, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×64; 7 — Pa элемент, № TT 7/10, вид снизу, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×65; 8 — Sd элемент, № TT 8/10, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×54; 9 — М элемент, № TT 9/10, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×73; 10 — P элемент, № TT 10/10, бурубайтальская свита, разрез Баритовый карьер (обр. 27 м), ×64; 11 — Sb элемент, № TT 11/10, бурубайтальская свита, разрез Раковая горка (обр. P10069), ×52; 12 — Sb элемент, № TT 12/10, бурубайтальская свита, разрез Баритовый карьер (обр. 27 м), ×88; 13 — P элемент, № TT 13/10, бурубайтальская свита, разрез Баритовый карьер (обр. 27 м), ×65.

Фиг. 10, 13 — *Oepikodus cf. O. pincallyensis* Zhen, 2003; бурубайтальская свита, разрез Баритовый карьер (обр. 23 м): 10 — Р элемент, № TT 14/10, вид с внешней стороны, ×68; 13 — Р элемент, № TT 15/10, вид с внешней стороны, ×72.

Фиг. 14, 17–23 — *Prioniodus elegans* Pander, 1856; бурубайтальская свита, разрез Баритовый карьер (обр. 20 м): 14 — Pb элемент, № TT 16/10, вид сверху, ×52; 17 — Pa элемент, № TT 17/10, вид снизу и сзади, ×64; 18 — Sb элемент, № TT 18/10, ×69; 19 — Pa элемент, № TT 19/10, ×77; 20 — Sd элемент, № TT 20/10, ×87; 21 — Pb элемент, № TT 21/10, ×64; 22 — M элемент, № TT 22/10, ×72; 23 — Sb элемент, № TT 23/10, ×624.
ТАБЛИЦА 11

ТАБЛИЦА 12

Фиг. 1–3, 5 — *Paroistodus proteus* (Lindström, 1955); бурубайтальская свита, разрез Раковая горка (обр. P10069): 1 — М элемент, № TT 1/12, ×76; 2 — S элемент, № TT 2/12, ×68; 3 — S элемент, № TT 3/12, ×70; 5 — S элемент, № TT 4/12, ×71.

Фиг. 4, 6 — *Paroistodus* sp., бурубайтальская свита, разрез Раковая горка (обр. P10069): 4 — M элемент, № TT 5/12, ×69; 6 — M элемент, № TT 6/12, ×76.

Фиг. 7–12 — *Paroistodus* cf. *P. originalis* (Sergeeva, 1963); бурубайтальская свита, разрез Баритовый карьер (обр. 49 м): 7 — M элемент, № TT 7/12, ×66; 8 — S элемент, № TT 8/12, ×99; 9 — S элемент, № TT 9/12, ×101; 10 — S элемент, № TT 10/12, ×94; 11 — M элемент, № TT 11/12, ×65; 12 — S элемент, № TT 12/12, ×87.

Фиг. 13–16 — *Paroistodus horridus* (Barnes et Poplawski, 1973); бурубайтальская свита, разрез Баритовый карьер (обр. 60 м): 13 — S элемент, № TT 13/12, ×43; 14 — S элемент, № TT 14/12, ×85; 15 — M элемент, № TT 15/12, ×78; 16 — S элемент, № TT 16/12, ×57.

Фиг. 17–19, 23, 25, 26 — *Scolopodus* cf. *S. oistodiformis* An et Ding, 1985: 17 — S элемент, № TT 17/12, курдайская свита (обр. 72/6), ×53; 18 — S элемент, № TT 18/12, курдайская свита (обр. 72/6), ×74; 19 — S элемент, № TT 19/12, курдайская свита (обр. 72/6), ×58; 23 — M элемент, № TT 20/12, кенташская толща (обр. Д-9066), ×66; 25 — S элемент, № TT 21/12, кенташская толща (обр. Д-9066), ×49; 26 — M элемент, № TT 22/12, кенташская толща (обр. Д-9066), ×82.

Фиг. 20–22, 24 — *Scolopodus* sp.; бурубайтальская свита, разрез Баритовый карьер (обр. 20 м): 20 — S элемент, № TT 23/12, ×59; 21 — S элемент, № TT 24/12, ×62; 22 — S элемент, № TT 25/12, ×69; 24 — S элемент, № TT 26/12, ×73.
ТАБЛИЦА 13

Фиг. 1–18 — *Periodon flabellum* (Lindström, 1955); бурубайтальская свита, разрез Раковая горка (обр. Р10069): 1 — Pb элемент, № ТТ 1/13, ×78; 2 — Pa элемент, № ТТ 2/13, ×72; 3 — Sd элемент, вид снизу, № ТТ 3/13, ×75; 4 — Sa элемент, вид сверху, № ТТ 4/13, ×76; 5 — Sd элемент, вид сверху, № ТТ 5/13, ×76; 6 — Sb элемент, вид снизу, № ТТ 6/13, ×119; 7 — Sb элемент, вид снизу, № ТТ 7/13, ×84; 8 — Pb элемент, № ТТ 8/13, ×73; 9 — Sb элемент, № ТТ 9/13, ×85; 10 — Sb элемент, № ТТ 10/13, ×65; 11 — Sb элемент, № ТТ 11/13, ×68; 12 — Sb элемент, № ТТ 12/13, ×67; 13 — Sc элемент, № ТТ 13/13, ×67; 14 — M элемент, № ТТ 14/13, ×82; 15 — Sd элемент, № ТТ 15/13, ×69; 16 — Sb элемент, вид спереди, № ТТ 16/13, ×105; 17 — M элемент, № ТТ 17/13, ×74; 18 — M элемент, № ТТ 18/13, ×89.

Фиг. 19–25 — *Periodon aculeatus* Hadding, 1913; терригенно-карбонатная толща гор Окпекты (обр. Р-10204а): 19 — P элемент, № ТТ 19/13, ×45; 20 — Sc элемент, № ТТ 20/13, ×44; 21 — P элемент, № ТТ 21/13, ×53; 22 — M элемент, № ТТ 22/13, ×72; 23 — Sb элемент, № ТТ 23/13, ×49; 24 — Sb элемент, № ТТ 24/13, ×559; 25 — Sb элемент, № ТТ 25/13, ×58.
ТАБЛИЦА 14

Фиг. 1–11 — *Tropodus? sweeti* (Serpagli, 1974): 1 — Р элемент, № ТТ 1/14, кенташская толща (обр. Д-9066), ×76; 2 — Sb элемент, № ТТ 2/14, кенташская толща (обр. Д-9066), ×67; 3 — Sb элемент, № ТТ 3/14, кенташская толща (обр. Д-9066), ×71; 4 — Sd элемент, № ТТ 4/14, кенташская толща (обр. Д-9066), ×72; 5 — Sd элемент, № ТТ 5/14, кенташская толща (обр. Д-9066), ×105; 6 — P элемент, № ТТ 6/14, карата́льская свита, ×91; 7 — Sd элемент, № ТТ 7/14, карата́льская свита, ×89; 8 — Sd элемент, № ТТ 8/14, карата́льская свита, ×105; 9 — Sb элемент, № ТТ 9/14, карата́льская свита, ×89; 11 — Sb элемент, № ТТ 10/14, карата́льская свита, ×91.

Фиг. 12–21, 27, 28 — *Tropodus australis* (Serpagli, 1974); кенташская толща (обр. Д-9066): 12 — Sa элемент, № ТТ 11/14, ×167; 13 — P элемент, № ТТ 12/14, ×106; 14 — S элемент, № ТТ 13/14, ×89; 15 — S элемент, № ТТ 14/14, ×87; 16 — S элемент, № ТТ 15/14, ×79; 17 — S элемент, № ТТ 16/14, ×89; 18 — P элемент, № ТТ 17/14, ×112; 19 — Sa элемент, № ТТ 18/14, ×103; 20 — S элемент, № ТТ 19/14, ×94; 21 — P элемент, № ТТ 20/14, ×99; 27 — S элемент, № ТТ 21/14, ×89; 28 — S элемент, № ТТ 22/14, ×88.

Фиг. 22, 23 — *Drepanodus arcuatus* Pander, 1856: 22 — Sc элемент, № ТТ 23/14, найманская свита, ×78; 23 — Sa элемент, № ТТ 24/14, бурубайтальская свита, разрез Баритовый карьер (обр. 20 м), ×112.

Фиг. 26 — *Protopanderodus* sp.; S элемент, № ТТ 27/14, найманская свита, ×140.
ТАБЛИЦА 15

Фиг. 20–24 — *Ansella robusta* (Ethington et Clark, 1982); кенташская толща (обр. Д-9041): 20 — P элемент, № ТТ 20/19, вид с внешней стороны, ×82; 21 — P элемент, № ТТ 20/19, вид с внутренней стороны, ×82; 22 — Sc элемент, № ТТ 21/19, ×80; 23 — Sb? элемент, № ТТ 22/19, ×75; 24 — М элемент, № ТТ 23/19, ×78.
ТАБЛИЦА 16

Фиг. 1–5 — Aurilobodus leptosomatus An in An et al., 1983; узунбулакская свита: 1 — S элемент, № TT 1/16, ×75; 2 — S элемент, № TT 2/16, вид сзади, ×76; 3 — S? элемент, № TT 3/16, вид спереди, ×73; 4 — S? элемент, № TT 4/16, ×89; 5 — Sa элемент, № TT 5/16, вид сзади, ×95.

Фиг. 12–17 — Spinodus spinatus (Hadding, 1913): 12 — P элемент, № TT 11/16, тасбулакская свита, ×76; 13 — Sб элемент, № TT 12/16, тасбулакская свита, ×83; 14 — Sd элемент, № TT 13/16, тасбулакская свита, ×65; 15 — M элемент, № TT 14/16, бурубайтальная свита, разрез Баритовый карьер (обр. с 60 м), ×83; 16 — Sc элемент, № 12829/37, бурубайтальная свита, разрез Памятник природы — 9706 (обр. с 23 м), ×91; 17 — P элемент, № 12829/38, бурубайтальная свита, разрез Памятник природы — 9706 (обр. с 23 м), ×105.

Фиг. 18–21 — Protopanderodus? sp. 1; узунбулакская свита, элементы с ребром на обеих боковых сторонах, основание вытянуто назад, на нижней части основания развита микроребристость: 18 — S элемент, № TT 15/16, вид с внутренней стороны, ×102; 19 — Sa? элемент, № TT 16/16, ×112; 20 — S элемент, № TT 17/16, вид с внешней стороны, ×99; 21 — Sa? элемент, № TT 18/16, ×98.

Фиг. 22–24 — Protopanderodus? sp.; узунбулакская свита, ребро на одной из боковых сторон, поверхность элемента гладкая: 22 — S элемент, № TT 19/16, ×125; 23 — S элемент, № TT 20/16, ×125; 24 — S элемент, № TT 21/16, ×125.
ТАБЛИЦА 17

Фиг. 1—6 — *Appalachignathus* sp.; найманская свита: 1 — Pb элемент, № TT 1/17, ×105; 2 — Pb элемент, № TT 2/17, ×127; 3 — Pb элемент, № TT 3/17, ×213; 4 — фрагмент задней части Pb элемент, № TT 1/17, ×220; 5 — S элемент, № TT 4/17, задне-боковой вид, ×96; 6 — S элемент, № TT 5/17, вид сзади, ×87.

Фиг. 7, 8, 12, 13, 14—17 — *Costiconus ethingtoni* (Fahraeus, 1966): 7 — S элемент, № TT 9/17, вид сверху, найманская свита, ×176; 8 — S элемент, № TT 10/17, найманская свита, ×155; 12 — P элемент, № TT 11/17, найманская свита, ×125; 13 — P элемент, № TT 12/17, узунбулакская свита, ×121; 14 — S элемент, № TT 13/17, найманская свита, ×132; 15 — S элемент, № TT 14/17, найманская свита, ×118; 16 — S элемент, № TT 15/17, узунбулакская свита, ×148; 17 — S элемент, № TT 16/17, вид сверху, узунбулакская свита, ×165.

Фиг. 18—24 — *Decoriconus peselephantus* (Lindström, 1955) s.l.: 18 — № 14/13184, ирадырская свита (обр. 96), ×270; 19 — № TT 17/17, бурубайтальская свита, разрез гор Котнак (обр. О5133), ×187; 21 — № TT 19/17, бурубайтальская свита, разрез гор Котнак (обр. О5133), ×165; 22 — № TT 20/17, бурубайтальская свита, разрез гор Котнак (обр. TT 10-7), ×189; 23 — № TT 21/17, бурубайтальская свита, разрез Баритовый карьер (обр. с 40 м), ×151; 24 — № TT 22/17, бурубайтальская свита, разрез Баритовый карьер (обр. с 40 м), ×125.
ТАБЛИЦА 18

Фиг. 11–17 – Drepanoistodus cf. D. basiovalis (Sergeeva, 1963); узунбулакская свита: 11 – S элемент, № TT 12/18, ×106; 12 – S элемент, № TT 13/18, ×99; 13 – P элемент, № TT 14/18, ×105; 14 – M элемент, № TT 15/18, ×114; 16 – M элемент, № TT 16/18, ×99; 17 – S элемент, № TT 17/18, ×87.

Фиг. 18–26 – Drepanoistodus latus Pyle et Barnes, 2003; найманская свита: 18 – S элемент, № TT 18/18, ×98; 19 – S элемент, № TT 19/18, ×109; 20 – S элемент, № TT 20/18, ×142; 21 – S элемент, № TT 21/18, ×122; 22 – M элемент, № TT 22/18, ×114; 23 – S элемент, № TT 23/18, ×136; 24 – S элемент, № TT 24/18, ×91; 25 – M элемент, № TT 25/18, ×167; 26 – M элемент, № TT 26/18, ×134.
ТАБЛИЦА 19

Фиг. 1–13 — *Fahraeusodus marathonensis* (Bradshaw, 1969); бурубайтальская свита, разрез Баритовый карьер (обр. с 60 м): 1 — Pa элемент, № TT 1/19, вид с внутренней стороны, ×89; 2 — Pb элемент, № TT 2/19, вид с внутренней стороны, ×82; 3 — Pb элемент, № TT 3/19, вид с внешней стороны, ×76; 4 — Pa? элемент, № TT 4/19, вид с внешней стороны, ×109; 5 — Pb элемент, № TT 5/19, вид с внешней стороны, ×78; 6 — Pb элемент, № TT 6/19, вид с внешней стороны, ×73; 7 — Sc элемент, № TT 7/19, вид сбоку, ×69; 8 — Sa элемент, № TT 8/19, вид сбоку, ×68; 9 — Sa элемент, № TT 9/19, вид сбоку, ×67; 10 — Sc элемент, № TT 10/19, вид сбоку, ×77; 11 — Sa элемент, № TT 11/19, вид сбоку, ×71; 12 — M элемент, № TT 12/19, вид сбоку, ×69; 13 — Sb элемент, № TT 13/19, вид сбоку, ×100.

Фиг. 14—23 — *Erraticodon cf. E. hexianensis* An et Ding, 1985: 14 — Sc элемент, № TT 14/19, узунбулакская свита, вид с внешней стороны, ×52; 15 — ?Pa элемент, № TT 15/19, узунбулакская свита, ×64, вид с внешней стороны; 16 — Sc элемент, № TT 16/19, узунбулакская свита, вид с внутренней стороны, ×62; 17 — Pa элемент, № TT 17/19, узунбулакская свита, вид с внутренней стороны, ×58; 18, 21 — Sa элемент, № TT 18/19, найманская свита, 18 — вид сверху, 21 — вид сбоку, ×54; 19 — M элемент, № TT 19/19, узунбулакская свита, вид сбоку, ×59; 20 — M элемент, № TT 20/19, найманская свита, вид сбоку, ×63; 22 — Sd элемент, № TT 21/19, узунбулакская свита, вид с внешней стороны, ×59; 23 — Pa элемент, № TT 22/19, узунбулакская свита, вид с внутренней стороны, ×44.
ТАБЛИЦА 20

Фиг. 2–5 – Juanognathus variabilis Serpagli, 1974: 2 – S элемент, № ТТ 11/20, кенташская толща (обр. Д-9066), вид сзади, ×84; 3 – S элемент, № ТТ 12/20, кенташская толща (обр. Д-9066), вид спереди, ×89; 4 – Sa элемент, № ТТ 13/20, каратальская свита, вид сзади, ×65; 5 – Sa элемент, № ТТ 14/20, каратальская свита, вид спереди, ×69.

Фиг. 20–22 – Juanognathus sp. 1; вулканогенная толща (обр. 11130): 20 – S элемент, № ТТ 15/20, вид сзади, ×93; 21 – S элемент, № ТТ 16/20, вид сзади, ×78; 22 – S элемент, № ТТ 17/20, вид сзади, ×77.

ТАБЛИЦА 21

Фиг. 14—16 — Histiodella sinuosa (Graves et Ellison, 1941); бурубайтальская свита, разрез Баритовый карьер (обр. с 60 м): 14 — элемент, № TT 15/21, ×120; 15 — элемент, № TT 16/21, ×141; 16 — элемент, № TT 17/21, ×134.

Фиг. 17, 20 — Histiodella holodentata Ethington et Clark, 1982; бурубайтальская свита, разрез Баритовый карьер (обр. с 60 м): 17 — Ra элемент, № TT 18/21, ×114; 20 — Ra элемент, № TT 19/21, ×127.

Фиг. 18, 19 — Histiodella sp. 1: 18 — Ra элемент, № TT 20/21, ×145; 19 — Ra элемент, № TT 21/21, ×162.

ТАБЛИЦА 22

Таблица 22

![Image of fossil fragments](image_url)
ТАБЛИЦА 23

Фиг. 1, 2 — *Cahabagnathus?* sp.; найманская свита: 1 — пастинатный (Pa) элемент, № TT 1/23, ×87; 2 — стеллипланатный (Pb) элемент, № TT 2/23, ×95.

Фиг. 13–22 — *Yangtzeplacognathus?* sp.: 13 — Pa элемент, № TT 12/23, узунбулакская свита, вид с внутренней стороны, ×107; 14 — Pa элемент, № TT 12/23, узунбулакская свита, вид с внешней стороны и сверху, ×100; 15 — Pa элемент, № TT 13/23, найманская свита, ×111; 16 — Pa элемент, № TT 14/23, узунбулакская свита, ×156; 17 — Pb элемент, № TT 15/23, узунбулакская свита, вид с внутренней стороны, ×91; 18 — Pb элемент, № TT 15/23, узунбулакская свита, вид с внешней стороны, ×91; 19 — Pa? элемент, № TT 16/23, бурубайтальская свита, разрез Баритовый карьер (обр. 60 м), ×108; 20 — Pb элемент, № TT 12829/47, бурубайтальская свита, разрез Памятник природы — 9706 (обр. 41,25 м), ×100; 21 — Pa элемент, № TT 12829/44, бурубайтальская свита, разрез Памятник природы — 9706 (обр. 52 м), вид с внешней стороны, ×95; 22 — Pb элемент, № TT 12829/48, бурубайтальская свита, разрез Памятник природы — 9706 (обр. 52 м), ×80.
ТАБЛИЦА 24

Фиг. 1–3, 6, 11–15 — Baltoniodus sp.: 1 — Ра? элемент, № 1/24, найманская свита, ×115; 2 — Pb элемент, № 2/24, узунбулакская свита, ×78; 3 — Ра элемент, № 3/24, найманская свита, ×82; 6 — М элемент, № 4/24, найманская свита, ×80; 11 — Sd элемент, № 19/24, найманская свита, ×105; 12 — Sa элемент, № 5/24, найманская свита, ×95; 13 — Sd элемент, № 6/24, найманская свита, ×99; 14 — Sa элемент, № 7/24, найманская свита, ×118; 15 — Sa элемент, № 8/24, найманская свита, ×121.

Фиг. 4, 5, 7–10 — Dzikodus sp.; найманская свита: 4 — Sd элемент, № 9/24, ×95; 5 — Sd элемент, № 10/24, ×109; 7 — М элемент, № 11/24, ×81; 8 — Sa элемент, № 12/24, ×80; 9 — Sd элемент, № 13/24, ×83; 10 — Sd элемент, № 14/24, ×94.

Фиг. 16–18 — Yangtzeplacognathus? sp.; найманская свита: 16 — Sd элемент, № 15/24, ×106; 17 — Sa элемент, № 16/24, ×117; 18 — Sd элемент, № 17/24, ×123.

Фиг. 19, 20 — Prioniodus honghuayuanensis Zhen, 2005; № 18/24, кластер из 9 элементов — 2 Р, 1 М, 1 Sa, 2 Sc? 2 Sb, бурубайтальская свита, разрез Памятник природы — 9706 (обр. с 11 м), вид с разных сторон в проходящем свете, ×69.
ТАБЛИЦА 25

Фиг. 1–11 — Naimanodus degtyarevi Tolmacheva, 2013; все элементы кроме фиг. 8 из найманской свиты: 1 — удлиненный элемент (S), № ТТ 1/25, ×110; 2 — удлиненный элемент (S), № ТТ 2/25, ×121; 3 — удлиненный элемент (S), № ТТ 3/25, ×122; 5 — удлиненный элемент (S), № ТТ 5/13218, вид сзади, ×121; 6 — удлиненный элемент (S), № ТТ 4/25, ×132; 7 — симметричный удлиненный элемент (Sa), № 15/13218, вид сзади, ×94; 8 — удлиненный элемент (S), № 7/13218, вид сзади, Кенташская свита (обр. Д-9041), ×98; 9 — уплощенный элемент (P), № 14/13218, вид сбоку, ×119; 10 — уплощенный элемент (P), № 11/13218, вид снизу, ×128; 11 — уплощенный элемент (P), № ТТ 5/25, ×118.

Фиг. 19 — Dapsilodus sp., S элемент, Кулунбулакская свита (обр. Р10174): № ТТ 16/25, ×94.
ТАБЛИЦА 26

Фиг. 1—11 — *Protopanderodus? nogamii* (Lee, 1975); кенташская толща (обр. Д-9041): 1 — Pb элемент, № TT 1/26, ×123; 2 — Pb элемент, № TT 1/26, ×123; 3 — Ra элемент, № TT 2/26, ×145; 4 — Ra элемент, № TT 2/26, ×145; 5 — Ra элемент, № TT 3/26, ×140; 6 — S элемент, № TT 4/26, ×163; 7 — S элемент, № TT 4/26, ×164; 8 — S элемент, № TT 5/26, ×159; 9 — S элемент, № TT 6/26, ×171; 10 — S элемент, № TT 7/26, ×173; 11 — Pb элемент, № TT 8/26, вид снизу, ×256.

Фиг. 12, 13 — *Panderodus* sp. 1, характеризуется резко выступающими передне-боковыми килями; узунбулакская свита: 12 — № TT 8/26, ×184; 13 — № TT 9/26, вид сзади, ×221.

Фиг. 15 — *Panderodus* sp.; толща эффузивов и туфов среднего и основного состава, гор Окпекты (обр. P-10201), № TT 13/26, ×121.

Фиг. 16, 19—22 — *Paroistodus? nowlani* Zhen, Webby et Percival; бестамакская свита: 16 — M элемент, № TT 14/26, ×94; 19 — S элемент, № TT 15/26, вид спереди, демонстрирующий переднее и передне-боковое ребро, ×134; 20 — S элемент, № TT 16/26, ×106; 21 — S элемент, № TT 17/26, ×112; 22 — S элемент, № TT 18/26, вид с внутренней стороны, ×85.
ТАБЛИЦА 27

Фиг. 15, 16 — *Periodon* sp.; отличается тонкими, расставленными зубчиками на заднем стержне примерно одного размера, найманская свита: 15 — Sb элемент, № ТТ 18/27, ×94; 16 — Sc элемент, № ТТ 19/27, ×82.

Фиг. 18 — *Periodon primus* Stouge et Bagnoli, 1988; бурубайтальская свита, разрез Баритовый карьер (обр. с 20 м): 18 — P элемент, № ТТ 20/27, ×95.
ТАБЛИЦА 28

Фиг. 18, 19 — Protopanderodus cf. P. cooperi (Sweet et Bergström, 1962); тасбулакская свита: 18 — S элемент, № ТТ 19/28, ×100; 19 — P элемент, № ТТ 20/28, ×135.

Фиг. 17, 22 — Protopanderodus liripipus Kennedy, Barnes & Uyeno, 1979; бестамакская свита: 17 — S элемент, № ТТ 21/28, ×95; 22 — S элемент, № ТТ 22/28, ×95.
ТАБЛИЦА 29

ТАБЛИЦА 30

Фиг. 1—4 — Gen indet. sp. 1; уплощенные с боковых сторон элементы с небольшими выступами в базальной части основания, поверхность элементов гладкая, бур-байтальская свита, разрез Баритовый карьер (обр. 30 м): 1 — № ТТ 1/30, ×170; 2 — № ТТ 2/30, ×225; 3 — № ТТ3/30, ×184; 4 — № ТТ 4/30, ×132.

Фиг. 5, 6 — Oelandododus? sp.; уплощенные с боковых сторон элементы с ребрами на каждой из боковых сторон, курдайская свита (обр. 72б): 5 — M элемент, № ТТ 5/30, курдайская свита (обр. 72б), ×78; 6 — S элемент, № ТТ 6/30, ×134.

Фиг. 7, 8 — Oistodus sp.: 7 — Sb элемент, № ТТ 7/30, кенташская толща (обр. 9066), ×118; 8 — Sb элемент, № ТТ 8/30, бур-байтальская свита, разрез гор Котнак (обр. О5133), ×114.

Фиг. 9, 10 — Scolopodus? sp.; элементы с задним и двумя боковыми ребрами, каратальская свита: 9 — № ТТ 9/30, ×134; 10 — № ТТ 10/30, задне-боковой вид, ×125.

Фиг. 11 — Gen et sp. indet. A., № ТТ 11/30, ×104;
Фиг. 12 — Drepanoistodus sp., № ТТ 12/30, ×65.

Фиг. 18 — Gen et sp. indet. C, № ТТ 18/30, два ребра на одной боковой стороне, другая боковая сторона гладкая, вулканогенная толщ Урумбаевой зоны, ×93.

Фиг. 21 — Gen et sp. indet. D, № ТТ 21/30, узунбулакская свита, ×300.
Таблица 30
ТАБЛИЦА 31

Фиг. 6 — Belodina sp. 1, S элемент, № TT 11/31, кулунбулакская свита (обр. P10171), ×95.

Фиг. 8 — Belodina sp., S элемент, № TT 12/31, бестамакская свита, ×111.

Фиг. 9 — Belodina sp., S элемент, № TT 13/31, бестамакская свита, ×78.

Фиг. 16 — Belodina sp. 2, № TT 16/31, кулунбулакская свита (обр. P10171), ×84.

Фиг. 17—19 — Pygodus serra (Hadding, 1913); терригенно-карбонатная толща гор Окпекты (обр. Р-10204а): 17 — P элемент, № TT 17/31, ×74; 18 — P элемент, № TT 18/31, бестамакская свита, ×67; 19 — P элемент, № TT 19/31, бестамакская свита, ×54.

Фиг. 20 — Chirognathus? sp., № TT 20/31, кулунбулакская свита (обр. P10177), ×76.

ТАБЛИЦА 32

Фиг. 1–5, 7–10, 12, 13 – Periodon aculeatus Hadding, 1913; бестамакская свита:

Фиг. 16 – Strachanognathus parvus Rhodes, 1955; бестамакская свита, № ТТ 16/32, ×73.

ТАБЛИЦА 33

Фиг. 1, 7, 9 — *Paracordylodus gracilis* Lindström, 1955; естественные группировки конодонтов фекальной природы, бурубайтальская свита: 1 — группировка, более чем из 100 элементов, № 85/12829, разрез Памятник природы — 9706 (14 м), проходящий свет, ×34; 7 — группировка из 15 элементов, № TT 1/33, разрез Памятник природы — 9706 (16 м), отраженный свет, ×55; 9 — группировка из 15 элементов, NMW 98.70G.3, разрез Памятник природы — 9706 (16 м), отраженный свет, ×40.

Фиг. 2, 6, 8, 11 — *Decoriconus peselephantus* (Lindström, 1955) s.l.; разрез Памятник природы — 89101 (27,72 м): 2 — группировка из 17 элементов, проходящий свет, № TT 2/33, ×57; 6 — группировка из 5 элементов, № TT 8/33, проходящий свет, ×57; 8 — группировка из 5 элементов, № TT 3/33, отраженный свет, ×54; 11 — естественная группировка из 13 элементов, № 83/12829, проходящий свет, ×88.

Фиг. 3 — *Paroiostodus* cf. *P. parallelus* (Pander, 1856); группировка из 24 ювенильных элементов, № 25/12829, бурубайтальская свита, разрез Памятник природы — 9706 (9 м), проходящий свет, ×45.

Фиг. 4 — *Oelandodus elongatus* (Lindström, 1955); № TT 4/33, группировка из двух S элементов, бурубайтальская свита, разрез Памятник природы — 9706 (9 м), проходящий свет, ×40.

Фиг. 5 — *Chiganodus parilis* Tolmacheva sp. nov.; группировка из 11 элементов, № TT 5/33, бурубайтальская свита, разрез Памятник природы — 9706 (9 м), проходящий свет, ×45.

Фиг. 10 — *Drepanodus arcuatius* Pander, 1856; группировка из 8 элементов, № 21/12829, бурубайтальская свита, разрез Памятник природы — 9706 (23 м), проходящий свет, ×56.
ТАБЛИЦА 34

Фиг. 1, 8, 10 — *Paroistodus proteus* (Lindström, 1955): 1 — группировка из семи элементов, № 80/12829, бурубайтальская свита, разрез Памятник природы — 9706 (9 м), проходящий свет, ×60; 8 — группировка из 14 элементов, № ТТ 1/34, бурубайтальская свита, разрез Памятник природы — 9706 (12 м), проходящий свет, ×60; 10 — группировка из 10 ювенильных элементов, № 83/12829, бурубайтальская свита, разрез Памятник природы — 9706 (12 м), проходящий свет, ×70.

Фиг. 2 — *Decoriconus peselephantus* (Lindström, 1955) s.l.; группировка из 14 элементов, № ТТ 2/34, бурубайтальская свита, разрез Памятник природы — 89101 (27,72 м), проходящий свет, ×88.

Фиг. 4, 5 — Фекальные пеллеты из мельчайших фрагментов створок пелагических членистоногих, бурубайтальская свита, разрез Памятник природы — 9706 (12 м): 4 — № 88/12829, проходящий свет, ×42; 5 — № ТТ 4/34, отраженный свет, ×34.

Фиг. 7 — *Oepikodus cf. O. evae* (Lindström, 1955); группировка примерно из сотни ювенильных и сильно поврежденных элементов, № 86/12829, бурубайтальская свита, проходящий свет, ×38.

Фиг. 9 — *Prioniodus honghuayuanensis* Zhen, 2005; группировка из четырех элементов, бурубайтальская свита, разрез Памятник природы — 9706 (9 м), отраженный свет, ×45.
ФОТОИЗОБРАЖЕНИЯ
ТЕКСТУРНЫХ И СТРУКТУРНЫХ ОСОБЕННОСТЕЙ
ИЗУЧЕННЫХ РАЗРЕЗОВ И МЕСТОНАХОЖДЕНИЙ С ФАУНОЙ

Рис. 1. Разрез бурубайтальской свиты в Баритовом карьере
Рис. 2. Общий вид на нижнюю тремадокско-флоскую часть разреза Памятник природы — 9706

Рис. 3. Бугорчатые поверхности напластования в дарривильской части разреза бурубайтальской свиты в разрезе Памятник природы — 9706
Рис. 4. Шлифы кремней бурубайтальской свиты: А — поперечное сечение посмертно свернутой в трубку створки карнокарилиды; Б — радиолярит дарривильской части разреза свиты

Рис. 5. Прослой песчаника, где конодонтовые элементы играют роль песчинок в кремнистом матриксе
А — поперечный срез (X10); Б — продольный срез (X35)
Рис. 6. Пачка 1 в разрезе бурубайтальской свиты гор Котнак с переслаиванием черных и белых кремней

Рис. 7. Разрез кушенской свиты Голубая гряда. Кремнистые разности пород формируют положительные формы рельефа, подчеркивающиеся высушками темного цвета
Рис. 8. Косослоистые известковистые песчаники и известняки нижней части разреза маматской свиты (хр. Чингиз)

Рис. 9. Циклическое чередование известняков и фтанизитов в верхней части карбонатной пачки найманской свиты (хр. Чингиз)
Рис. 10. Обнажение кендыктасской и агалатасской свит в карьере к северо-западу от русла р. Агалатас. Отмечены места продуктивных проб на конодонты

Рис. 11. Смятые в складки кремни нижней сероцветной и верхней красноцветной частей Бурубайтальской свиты в стенке Баритового карьера
Татьяна Юрьевна Толмачева

БИОСТРАТИГРАФИЯ И БИОГЕОГРАФИЯ КОНОДОНТОВ ОРДОВИКА
ЗАПАДНОЙ ЧАСТИ ЦЕНТРАЛЬНО-АЗИАТСКОГО СКЛАДЧАТОГО ПОЯСА

Научное издание

Редакторы издательства Т. М. Барабанова, Д. Е. Крепс
Корректоры Д. Е. Крепс, Л. В. Набиева
Художественный и технический редактор С. В. Щербакова

Подписано в печать 22.12.2014. Печ. л. 16,5. Уч.-изд. л. 36,03. Формат 84 × 108/16.
Тираж 250 экз. Заказ № 65001416. Цена договорная

Адрес редакции
199106, Санкт-Петербург, Средний пр., 74, ВСЕГЕИ
Тел. 328-87-85, факс 328-90-47. E-mail: TMB@vsegei.ru

Отпечатано на Картографической фабрике ВСЕГЕИ
199178, Санкт-Петербург, Средний пр., 72. Тел. 328-91-90, факс 321-81-53