From ecosystem functions to ecosystem services – a key to sustainable use of marine environment

Kirsi Kostamo Marine Research Centre, SYKE International Scientific Forum

'Gulf of Finland – natural dynamics and anthropogenic impact'

From ecosystem functions to ecosystem services — a key to sustainable use of marine environment?

Kirsi Kostamo Marine Research Centre, SYKE International Scientific Forum

'Gulf of Finland – natural dynamics and anthropogenic impact'

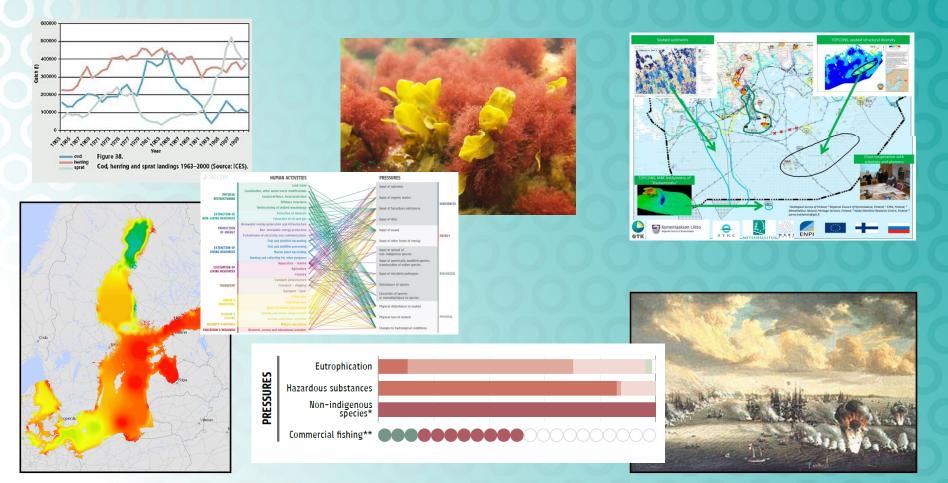
Sea use increases

- Natural resources
 - Fish, other biomasses
 - · Oil, gas, wind, waves
 - Seabed minerals, sand, gravel
- Space
 - Marine infrastructres
 - Energy
 - Aquaculture
 - Military
 - Maritime traffic
 - Tourism, recreation
 - Nature values
 - Cultural and historical values
 - ...

Sustainable use of marine resources?

Sea use should be sustainable

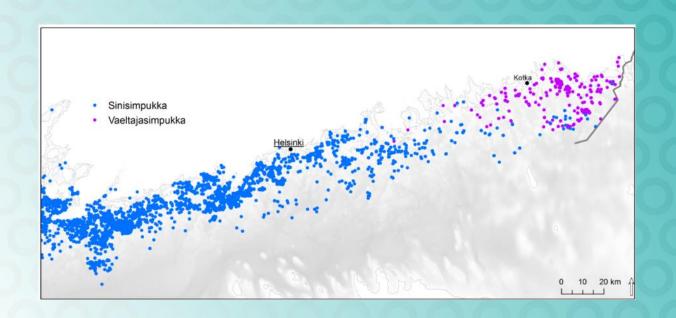
- What is sustainability?
 - Sustainable fishing
 - Fish catch quotas?
 - No-catch zones?
 - Protection of fish reproduction areas?
 - Sustainable maritime traffic
 - Restrictions on pollution?
 - Ship structure and speed?
 - Sustainable activities in ports?


Sustainable use of marine resources

Sustainability requires:

- Sustainable planning of marine and coastal areas
 - Ecosystem-based, transboundary and participatory process
- Comprehensive Environmental Impact Assessment processes (EIA)
 - Assessment of environmental and socio-economic impacts of planned activities
 - Cumulative impacts
- Monitoring

Excessive amount of data available



Ecosystem functions

- Individual species have traits that result in ecosystem functions
- Blue mussel:
 - Filtrates carbon and nutrients from seawater
 - Provides habitats for algae and invertebrates
 - Food for fish and birds

Mussels in hard bottoms in the Gulf of Finland Mytilus edulis vs. Dreissena polymorpha

Ecosystem services

Ecosystem services are the direct and indirect contributions of ecosystems to human well-being (TEEB D0).

They support directly or indirectly our survival and quality of life.

Ecosystem services

Ecosystem services can be categorized in four main types:

Provisioning services

The products obtained from ecosystems such as food, fresh water, wood, fiber, genetic resources and medicines.

Regulating services

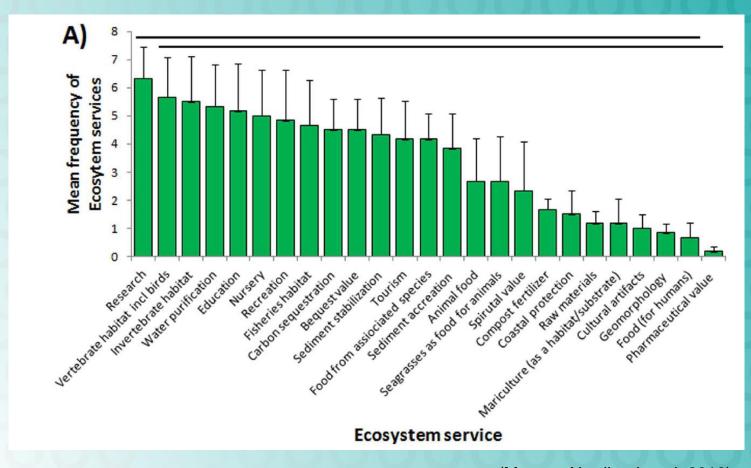
The benefits obtained from the regulation of ecosystem processes such as climate regulation, natural hazard regulation, water purification and waste management, pollination or pest control.

Habitat services

The importance of ecosystems to provide habitat for migratory species and to maintain the viability of gene-pools.

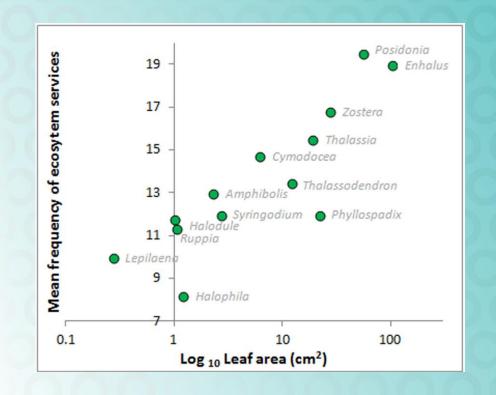
Cultural services

Non-material benefits that people obtain from ecosystems such as spiritual enrichment, intellectual development, recreation and aesthetic values.



Seagrass meadows

- Seagrasses form underwater meadows worldwide
 - Halophila, Ruppia, Halodule, Syringodium, Phyllospadix, Thalassodendron, Cymodocea, Thalassia, Zostera, Posidonia
 - Ruppia, Zostera, Potamogeton, Zannichellia, etc.
- Several important ecosystem functions:
 - Habitat, food and shelter for associated species
 - Carbon sequestration
 - Sediment stabilization
 - Fish nursery
 - Birds, mammals
- Seagrass meadows have declined worldwide during last decades



(Mtwana Nordlund et al. 2016)

Seagrass meadows

	Service present											_			Ē									Iron																
	Unknown			_	ı		_														ium		adix	dend			69	5									s l	A^{-1}		2
	Service not present			Halophila			Lepilaena		pia					Halodule					Syringodium		Phyllospadix	Thalassodendron		Cymodocea			Thalassia			Zostera			Amphibolis	Enhalus	1	Posidonia				
	Seagrass genus ->			Halo			Lepi		Ruppia								Halo	Halo			Syrir		Phyl	Thal		3				Thal		L	709		3		Amp	Enh	L	Pos
#	ECOSYSTEM SERVICES\Bioregion	=	≡	2	> :	5	5	-	=	=	≥	2 ?	> :	5	-	=	= ≥	2	> 5	=	>	5	2	>	5	-	≡	>	5	=	>	-	. ≡	≥	2 >	5	5	>	≡	5
1	Compost fertilizer																				L												L							
2	Fish habitat											4																												
3	Food (for humans)																															L								
4	Food from s.g. assoc. species																L																	L						
5	Invertebrate habitat																																							
6	Nursery (juvenile habitat)											H	H																											
7	Pharmaceuticals											4																									47			
8	Raw materials																																							
9	Vertebrate habitat incl birds																																							
10	Carbon sequestration											4																												
11	Coastal protection																																							
12	Geomorphology from sediment accretion											4									L																			
13	Sediment accreation										L																					L								
14	Sediment stabilization																																							
15	Animal food											4																									17			
16	Mariculture (as a substrate)																																							
17	Seagrasses as food for animals																																							

Seagrass meadows

 Condition of the seagrass meadows influences the quality and quantity of provided ecosystem services

 Can the value of ecosystem services be assessed based on possible human gains?

Ecosystem services in sea se planning

- Identification and value for natural values that have been previously only been described
- Intrest comparisons between economic interests and environmental values
 - Local economic/environmental values gains and conflicts
 - Regional economic/environmental values gains and conflicts
 - National economic/environmental values gains and conflicts
 - ...

Conclusions

Conclusions

Questions

- How can we describe the marine (and coastal) environmental values to support sustainable development of marine areas?
- What is relevant data for sustainable planning?
- What tools are available?
 - Maps? Models? Reports?

Thank you!

